题目描述:
QAQ.
题目分析:
观察系数都是 0 或 1
这个叫做高斯消元解异或方程.
正常求解:一个解,访问过的最大行数就是答案,然后M[I][n+1]就是解
无解:即某行1……n全0但n+1有数(即0x+0y+0z…… = 某非零数,显然不可能),本题没有这种情况
无数解:即某行全0(即0x+0y+0z…… = 0,显然xyz可以任取)
正常的高消是个O(N^3)的,理论上上过不了的 实际上过了...
考虑到每次消元就是两行的整体异或 我们直接搞个bitset优化就好了
O(N^2*m/64)
题目链接:
Ac 代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <bitset>
const int maxm=2100;
std::bitset<maxm> a[maxm];
int n,m;
inline int Gauss()
{
int now=0,ans=0;
for(int i=1;i<=n;i++)
{
int j=now+1;
while(j<=m&&!a[j][i]) j++;
if(j>m) return -1;
ans=std::max(ans,j);
now++;
std::swap(a[now],a[j]);
for(int j=1;j<= m;j++)
if(j!=now&&a[j][i]) a[j]^=a[now];
}
return ans;
}
char s[maxm];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%s",s+1);
for(int j=1;j<=n;j++)
a[i][j]=s[j]-'0';
scanf("%s",s+1);
a[i][n+1]=s[1]-'0';
}
int d=Gauss();
if(~d)
{
printf("%d\n",d);
for(int i=1;i<=n;i++)
if(!a[i][n+1]) puts("Earth");
else puts("?y7M#");
}
else puts("Cannot Determine");
return 0;
}