[SDOI 2010] 外星千足虫

11 篇文章 0 订阅
3 篇文章 0 订阅

题目描述:

QAQ.

题目分析:

观察系数都是 0 或 1
这个叫做高斯消元解异或方程.
正常求解:一个解,访问过的最大行数就是答案,然后M[I][n+1]就是解
无解:即某行1……n全0但n+1有数(即0x+0y+0z…… = 某非零数,显然不可能),本题没有这种情况
无数解:即某行全0(即0x+0y+0z…… = 0,显然xyz可以任取)
正常的高消是个O(N^3)的,理论上上过不了的 实际上过了...
考虑到每次消元就是两行的整体异或 我们直接搞个bitset优化就好了
O(N^2*m/64)

题目链接:

BZOJ 1923
Luogu 2447

Ac 代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <bitset>
const int maxm=2100;
std::bitset<maxm> a[maxm];
int n,m;
inline int Gauss()
{
    int now=0,ans=0;
    for(int i=1;i<=n;i++)
    {
        int j=now+1;
        while(j<=m&&!a[j][i]) j++;
        if(j>m) return -1;
        ans=std::max(ans,j);
        now++;
        std::swap(a[now],a[j]);
        for(int j=1;j<= m;j++)
         if(j!=now&&a[j][i]) a[j]^=a[now];
    }
    return ans;
}
char s[maxm];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%s",s+1);
        for(int j=1;j<=n;j++)
         a[i][j]=s[j]-'0';
        scanf("%s",s+1);
        a[i][n+1]=s[1]-'0';
    }
    int d=Gauss();
    if(~d)
    {
        printf("%d\n",d);
        for(int i=1;i<=n;i++)
         if(!a[i][n+1]) puts("Earth");
         else puts("?y7M#");
    } 
    else puts("Cannot Determine");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值