G - Bone Collector II
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
12 2 0
思路:
用01背包的思想上求出最大的价值dp[V]
然后求第k大背包,所以只能在原有的dp[V]上加一维用来表示背包容量为V的时候 的第1-->k的大小,用dp[V][k](1-->k)来表示。。
用两个数组a[1-->k],b[1-->k]来表示拿与不拿的状态,对比大小后合并序列
#include <iostream>
#include <cstring>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
int v[105],w[105];
int dp[1005][35];
int a[35],b[35];
int main(){
int T;
cin>>T;
while(T--){
memset(dp,0,sizeof(dp));
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
int N,V,K;
cin>>N>>V>>K;
for(int i=1;i<=N;i++) cin>>v[i];
for(int i=1;i<=N;i++) cin>>w[i];
for(int i=1;i<=N;i++){
for(int j=V;j>=w[i];j--){
for(int k=1;k<=K;k++){
a[k]=dp[j][k];
b[k]=dp[j-w[i]][k]+v[i];
}
a[K+1]=b[K+1]=-1; // 这里需要注意一下。。当下面所述的在h<=K情况下,x>K了那么就填充y,因为b[y]可能为0,所以要设置-1..
int h=1,x=1,y=1;
while(h<=K&&(x<=K||y<=K)){
int t;
if(a[x]>b[y]){
dp[j][h]=a[x++];
}
else{
dp[j][h]=b[y++];
}
if(dp[j][h]!=dp[j][h-1])
h++;
}
}
}
cout<<dp[V][K]<<endl;
}
return 0;
}