
人工智能
文章平均质量分 80
GIS 数据栈
热泪盈眶的生活!
展开
-
chatgpt 1020 错误码成功解决(三种方案)
最近很多小伙伴在尝鲜chatGPT,使用中遇到网站的1020的错误码,博主也遇到了相似的问题,不同的人运行环境不一样,可能解决方案不一样,接下来为大家提供几种解决思路,博主通过这种方法成功解决了,希望能帮到大家。原创 2023-01-14 14:32:07 · 81131 阅读 · 16 评论 -
七个常用的遥感影像变化监测模型介绍
在GIS(地理信息系统)行业中,遥感影像变化监测是评估地表覆盖、城市规划、环境监测等领域变化的重要手段。原创 2024-05-13 07:50:09 · 498 阅读 · 0 评论 -
detectron2 使用教程
detectron2通过配置文件定义模型。可以查看 detectron2目录下的configs路径,有各种各样功能的模型配置文件可以使用。包括:Detection(检测), InstanceSegmentation(实例分割), Keypoints(关键点检测), Panoptic(全景分割) 等各种类型。原创 2023-05-29 17:54:25 · 1694 阅读 · 1 评论 -
开发人员应考虑使用 Edge浏览器的 8 个理由
您还可以在 Mac 上使用快捷键shift+command+Y ,在 Windows 上使用快捷键 ctrl+shift+Y。除了打开一百万个选项卡之外,如果您是一名拥有宽屏显示器的设计师,您将会欣赏垂直选项卡功能。当您选择聊天选项卡时,您可以选择三种语气选项之一:更有创意、更平衡和更精确。您暂时不使用的选项卡将自动进入睡眠状态,这可以大大减少您的。有一个内置的截图工具,可以让你编辑和使用截图图像作为图像搜索的输入。您可以在您所在网页的上下文中与必应聊天。您可以轻松地将您的灵感分类并随时访问它们。原创 2023-04-25 11:06:39 · 1314 阅读 · 1 评论 -
使用 ArcGIS Pro 进行土地利用分类的机器学习和深度学习
下面是一个例子,说明最后一类的票数最高,在这种情况下,在一个水果篮中,我们有 2 棵苹果树和 1 棵香蕉树,最后一类将被定义为苹果,用于展示 2/3总票数。工具中使用它,之后使用一些参数作为模型的基础,以及一个 45°使用旋转角度,这将有助于增加我的图像(样本)。现在是最期待的一步,我们要测试我们的模型,我将使用相同的组合,但在不同的地方训练。技术进行分类,在这种分类中可以使用两种类型的方法,例如无监督或监督,并联合使用,称为混合分类。定义类后,我创建了多边形格式的样本,包含要作为一个整体分类的图像。原创 2023-04-12 17:31:22 · 3438 阅读 · 2 评论 -
LoRA 指南之 LyCORIS 模型使用
LoRA 指南之 LyCORIS 模型使用在C站看到这个模型,一眼就非常喜欢在经历几番挣扎之后终于成功安装原创 2023-04-11 07:10:22 · 2822 阅读 · 0 评论 -
10 个高级 Python 面试问题
10 个高级 Python 面试问题原创 2023-04-10 17:59:19 · 2930 阅读 · 0 评论 -
基于stable diffusion的艺术操作
下面是作者基于stable diffusion的艺术操作得益于人工智能的强大技术以下所有的图绝对是整体星球上唯一的几张图原创 2023-04-09 17:40:47 · 724 阅读 · 0 评论 -
Python:PyTorch 汽车计数示例
下面概述了如何在特定时间间隔获取特定区域的汽车数量,然后根据过去的数据进行预测。原创 2023-03-21 14:12:01 · 820 阅读 · 0 评论 -
关于 ChatGPT-4 你需要知道的一切
与它的前身一样,ChatGPT-4 并不热衷于对当前事件进行推理,因为它是根据 2021 年之前存在的数据进行训练的。在短短的 15 周内,它引发了全球就业市场的世界末日预言,扰乱了教育系统,并吸引了从大银行到应用开发商的数百万用户。但现在它告别了 ChatGPT,你好 ChatGPT-4 - 一个更强大的工具,肯定会在世界范围内产生更大的涟漪。软件的第四次迭代,它分析了来自互联网的大量信息,以确定如何生成听起来像人类的文本,并为用户提供详细的问题回答。争论的焦点是机器人的好坏取决于它所接受的训练信息。原创 2023-03-20 13:32:59 · 6728 阅读 · 0 评论 -
手把手教你实现HBase免切片渲染空间大数据
手把手教你实现HBase免切片渲染空间大数据转载 2023-03-07 17:11:22 · 654 阅读 · 0 评论 -
使用深度学习的卫星图像超分辨率,第 1 部分
即使测试图像和训练图像具有相同的 GSD,不同的大气条件和云层覆盖也会影响增强,部分解释了测试图像的性能优于训练图像的性能。受ResNet的启发,我们决定设计一个新的 DNN 作为恒等图的一系列扰动,因为超分辨率本质上是对较低分辨率图像的扰动。对于这个特定的训练算法,每层的训练分两个阶段进行:首先训练该层的参数,其次所有先前训练的参数与新层联合优化。要将超分辨率从不适定的优化问题转化为适定的逆问题,我们必须从更高分辨率的图像开始,降级该图像,并优化超分辨率算法以从降级的图像重建原始图像。原创 2023-03-04 21:33:41 · 303 阅读 · 0 评论 -
GeoAI 的4个主要应用领域
地理空间人工智能 (GeoAI) 是一门新兴的科学学科,它结合了空间数据科学、机器和深度学习中的方法,从空间大数据中提取知识(Janowicz 等人,2019 年)。它是一个活跃的研究领域,在许多领域都有应用,例如:灾害管理、城市规划、物流、零售、太阳能等(Ballesteros 等人,2021 年)。与此同时,卫星的可用性和质量迅速提高,最近无人机图像、其易用性以及消费者和专业无人机的实惠价格正在使这些技术融合。人们可能会认为 GeoAI 将大量算法应用于高空图像分析,但事实是这些算法仅总结为四种,它原创 2023-03-02 15:45:27 · 3869 阅读 · 0 评论 -
使用深度学习的卫星图像超分辨率 · part1
对于这个特定的训练算法,每层的训练分两个阶段进行:首先训练该层的参数,其次所有先前训练的参数与新层联合优化。要将超分辨率从不适定的优化问题转化为适定的逆问题,我们必须从更高分辨率的图像开始,降级该图像,并优化超分辨率算法以从降级的图像重建原始图像。,不同的大气条件和云层覆盖也会影响增强,部分解释了测试图像的性能优于训练图像的性能。扰动层内的更多卷积层增加了扰动层增强图像的能力,但训练收敛变得更加困难。当我们训练超分辨率算法来增强退化图像时,我们想要增强我们关心的区域,这些区域通常是具有结构的区域。原创 2023-02-27 21:31:13 · 604 阅读 · 0 评论 -
OpenStreetMap 和 SpaceNet 的算法比较
我们还注意到,与之前使用 SpaceNet 派生方法使用 Google 卫星图像 + OSM 标签所做的努力相比,有了 23% 的显着改进,这意味着从 SpaceNet 中吸取的教训适用于各种问题集。然而,在发展中国家,OSM 标签通常缺少元数据标签(例如限速或车道数),或者与高空图像的配准不佳(即标签偏离图像的坐标系)。使用称为方向学习的连接任务,结合堆叠卷积模块,有效地利用方向学习和分割任务之间的相互信息,从卫星图像中提取道路网络,并指出 RoadTracer 的性能有所提高。以改进困难地区的标签。原创 2023-02-27 20:33:04 · 1156 阅读 · 0 评论