使用 ArcGIS Pro 进行土地利用分类的机器学习和深度学习

本文探讨了使用ArcGIS Pro进行土地利用分类,对比了机器学习和深度学习的方法。通过 Sentinel-2A 图像,作者运用监督学习进行机器学习分类,达到89%的准确率,然后利用Resnet34架构训练深度学习模型,获得79%的准确率。尽管深度学习准确率稍低,但它在更复杂场景下可能更有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着技术进步,尤其是地理信息系统 (GIS)工具的进步,可以更有效地对土地利用进行分类。分类的使用可用于识别植被覆盖变化、非法采矿区和植被抑制区域,这些只是土地利用分类的众多示例中的一部分。

分类的一大困难是确定要解决的问题的级别。我分类的目的是什么?分类是否需要具有高精度以减少对人工交互进行校正的需要?分类的目的只是为了识别随时间的变化吗?是否会使用机器学习分类来减轻地理团队的工作量?只有免费图片才能解决我的问题?

简要介绍这项工作中使用的两种学习类型,机器学习深度学习有什么区别?

机器学习是机器学习的一种形式,是人工智能 (AI) 领域的一个子集,它使系统能够向操作员学习。这个学习领域使用数据来训练和找到准确的结果。

深度学习 或深度学习已经是机器学习的一个子集,模型将从更复杂的神经网络中学习。算法的创建就像机器学习一样,但包含更复杂的层次和更强大的计算能力。

理解这种差异的一种更简单的方法是,

ArcGIS Pro是Esri公司开发的一款强大的地理信息系统(GIS)软件,广泛应用于地理数据的处理分析。土地利用分类是GIS中的一个重要应用,通过对地表的土地利用类型进行分类,可以为城市规划、资源管理、环境监测等领域提供重要的决策支持。 在ArcGIS Pro中进行土地利用分类的步骤如下: 1. **数据准备**: - 获取遥感影像数据,如Landsat、MODIS、Sentinel等。 - 收集辅助数据,如地形图、土地利用现状图等。 2. **数据预处理**: - 对遥感影像进行辐射校正、几何校正、大气校正等处理,以提高分类精度。 - 根据需要裁剪影像,提取研究区域的影像数据。 3. **训练样本选择**: - 根据研究区域的实际情况,选择典型的土地利用类型作为训练样本。 - 在ArcGIS Pro使用“训练样本管理器”工具创建管理训练样本。 4. **分类方法选择**: - 选择合适的分类方法,如监督分类(支持向量机、最大似然法、随机森林等)非监督分类(K均值聚类等)。 - 在ArcGIS Pro使用“影像分类”工具箱中的相关工具进行分类。 5. **分类后处理**: - 对分类结果进行后处理,如分类精度评估、分类结果平滑处理等。 - 使用分类后处理”工具箱中的工具进行分类结果的优化。 6. **结果输出与分析**: - 将分类结果输出为需要的格式,如Shapefile、GeoTIFF等。 - 进行土地利用变化分析、统计报表生成等后续分析工作。 通过上述步骤,可以在ArcGIS Pro中完成土地利用分类工作,为相关领域的研究应用提供数据支持。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS 数据栈

谢谢打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值