[数据结构与算法] 求n个结点的完全图的任意两点间经过m条边的最短路径

本文介绍了如何求解n个节点的完全图中任意两点间经过m条边的最短路径问题。通过动态规划思想,当m=1时,结果等于输入的图;随着m增加,将问题分解为更小的子问题,最终实现O(m*n^2)时间复杂度的解决方案。给出了Python代码示例。
摘要由CSDN通过智能技术生成

 

题目:

光明小学的小朋友们要举行一年一度的接力跑大赛了,但是小朋友们却遇到了一个难题:设计接力跑大赛的线路,你能帮助他们完成这项工作么?
光明小学可以抽象成一张有N个节点的图,每两点间都有一条道路相连。光明小学的每个班都有M个学生,所以你要为他们设计出一条恰好经过M条边的路径。
光明小学的小朋友们希望全盘考虑所有的因素,所以你需要把任意两点间经过M条边的最短路径的距离输出出来以供参考。

你需要设计这样一个函数:
res[][] Solve( N, M, map[][]);
注意:map必然是N * N的二维数组,且map[i][j] == map[j][i],map[i][i] == 0,-1e8 <= map[i][j] <= 1e8。(道路全部是无向边,无自环)2 <= N <= 100, 2 <= M <= 1e6。要求时间复杂度控制在O(N^3*log(M))。

map数组表示了一张稠密图,其中任意两个不同节点i,j间都有一条边,边的长度为map[i][j]。N表示其中的节点数。
你要返回的数组也必然是一个N * N的二维数组,表示从i出发走到j,经过M条边的最短路径
你的路径中应考虑包含重复边的情况。

样例:

N = 3
M = 2
map = {
 {0, 2, 3},
 {2, 0, 1},
 {3, 1, 0}
}

输出结果result为:
result = {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值