最短路径算法

我们先来看一张图

这张图就表示了在不同情况下,适用于不同情况下的最短路算法,我们先来看一下Dijkstra朴素算法


一样的我们先上一副图:


 这幅图就大致展示了朴素Dijkstra算法的思路,这里再文字说明下:

集合S为已经确定最短路径的点集。
1. 初始化距离
一号结点的距离为零,其他结点的距离设为无穷大(看具体的题)。
2. 循环n次,每一次将集合S之外距离最短t的点加入到S中去(这里的距离最短指的是距离1号点最近。
点t的路径一定最短,基于贪心,严格证明待看)。然后用点t更新t邻接点的距离。


给定一个 n nn 个点 m mm 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 11 号点到 n nn 号点的最短距离,如果无法从 1 11 号点走到 n nn 号点,则输出 − 1 −1−1。

输入格式
第一行包含整数 n nn 和 m mm。

接下来 m mm 行每行包含三个整数 x , y , z x,y,zx,y,z,表示存在一条从点 x xx 到点 y yy 的有向边,边长为 z zz。

输出格式
输出一个整数,表示 1 11 号点到 n nn 号点的最短距离。

如果路径不存在,则输出 − 1 −1−1。

数据范围
1 ≤ n ≤ 500 , 1≤n≤500,1≤n≤500,
1 ≤ m ≤ 1 0 5 , 1≤m≤10^5,1≤m≤10 
5
 ,
图中涉及边长均不超过 10000 1000010000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4
1
2
3
4
输出样例:

3


#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N=510;

int g[N][N];    //为稠密阵所以用邻接矩阵存储
int dist[N];    //用于记录每一个点距离第一个点的距离
bool st[N];     //用于记录该点的最短距离是否已经确定

int n,m;

int Dijkstra()
{
    memset(dist, 0x3f,sizeof dist);     //初始化距离  0x3f代表无限大

    dist[1]=0;  //第一个点到自身的距离为0

    for(int i=0;i<n;i++)      //有n个点所以要进行n次 迭代
    {
        int t=-1;       //t存储当前访问的点

        for(int j=1;j<=n;j++)   //这里的j代表的是从1号点开始
            if(!st[j]&&(t==-1||dist[t]>dist[j]))//该步骤即寻找还未确定最短路的点中路径最短的点  
                t=j;

        st[t]=true;   

        for(int j=1;j<=n;j++)           //依次更新每个点所到相邻的点路径值
            dist[j]=min(dist[j],dist[t]+g[t][j]);
    }

    if(dist[n]==0x3f3f3f3f) return -1;  //如果第n个点路径为无穷大即不存在最低路径
    return dist[n];
}
int main()
{
    cin>>n>>m;

    memset(g,0x3f,sizeof g);    //初始化图 因为是求最短路径
                                //所以每个点初始为无限大

    while(m--)
    {
        int x,y,z;
        cin>>x>>y>>z;
        g[x][y]=min(g[x][y],z);     //如果发生重边的情况则保留最短的一条边
    }

    cout<<Dijkstra()<<endl;
    return 0;
}

if(!st[j]&&(t==-1||dist[t]>dist[j]))

在这里插入图片描述

 这里再解释下这句,如上图这种情况,假如2已经被标记过,再下一次循环我们的t应该是3还是4,很显然是4,为什么呢,因为从1到4的距离小于从1到3的距离。所以这一步我们是要确保到终点的最短路径。


 堆优化dikstra算法

我们通过上面的算法可以发现,朴素的dijkstra算法是要遍历每一条边,找到最短的第一次遍历到的点t,然后对每一个点距离进行更新,其的时间复杂度为O(n^2),如果出现点众多的情况

例如10000个点,那么使用朴素的dijkstra算法必然会超时

所以人们针对了这种有众多点的情况用堆优化了dijkstra算法,使其的时间复杂度为O(mlogn)

这在解决有众多点而边数量偏少的稀疏图有奇效


 


 看图:

 


#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
priority_queue<PII,vector<PII>,greater<PII>> q;
const int N = 150010;
int e[N],ne[N],w[N],h[N],idx;
int n,m;
int dist[N];
bool st[N];

void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void dijkstra()  // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
{
    memset(dist, 0x3f, sizeof dist);
    dist[1]=0;
    q.push({0,1});
    while (q.size()>0)
    {
        int point=q.top().second,distance=q.top().first;
        q.pop();
        if (st[point]==true)
        {
            continue;
        }
        st[point]=true;
        for (int i=h[point];i!=-1;i=ne[i])
        {
            int t=e[i];
            if (dist[t]>distance+w[i])
            {
                dist[t]=distance+w[i];
                q.push({distance+w[i],t});
            }
        }
    }
    if (dist[n]==0x3f3f3f3f)
    {
        cout<<-1;
        return;
    }
    else
    {
        cout<<dist[n]<<endl;
    }
}


int main()
{
    memset(h, -1, sizeof h);
    scanf("%d%d", &n, &m);
    int a,b,c;
    for (int i = 0; i < m; i ++ )
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    dijkstra();
    return 0;
}


有边数限制的最短路
题目:
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。
注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。
如果不存在满足条件的路径,则输出“impossible”。
数据范围

1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。
1
2
3
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
1
2
3
4
5
6
7


什么是bellman - ford算法?
Bellman - ford算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。
(通俗的来讲就是:假设1号点到n号点是可达的,每一个点同时向指向的方向出发,更新相邻的点的最短距离,通过循环n-1次操作,若图中不存在负环,则1号点一定会到达n号点,若图中存在负环,则在n-1次松弛后一定还会更新)

 


 算法思路看图:



#include <iostream>
#include <cstring>
#include <algorithm>
    
using namespace std;
const int N = 510,M=1010;
int n,m,k;
int dist[N];
int backup[N];


struct edge
{
    int a,b,w;
}edge[M];

int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1]=0;
    for (int i=0;i<k;i++)//循环几次就是题目限制几条边
    {
        memcpy(backup,dist,sizeof dist);//复制上一次的dist数组
        for (int j=0;j<m;j++)
        {
            int a=edge[j].a,b=edge[j].b,w=edge[j].w;
            dist[b]=min(dist[b],backup[a]+w);
        }
    }
    if (dist[n]>0x3f3f3f3f/2)
    {
        return -1;
    }
    else
    {
        return dist[n];
    }
}

int main()
{
    scanf("%d%d%d", &n, &m,&k);
    for (int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d", &a, &b,&w);
        edge[i]={a,b,w};
    }
    int t=bellman_ford();
    if (t==-1)
    {
        puts("imposible");
    }
    else
    {
        printf("%d\n",t);
    }
    return 0;
}

Floyd算法:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible。

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。

数据范围

1≤n≤200,
1≤k≤n^2,
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:

impossible
1


floyd算法的原理是基于动态规划的基础上实现的,因为是稠密图我们通过邻接矩阵来存储,我们将各点距离初始化为正无穷(该点到自己的距离为0),然后进行三重循环,每层循环从第一个节点开始遍历,直至遍历到第n个节点,设最外层循环当前节点为k,中间层循环的当前节点为i,内层循环的当前节点为j。其中d[k, i, j]表示从i到j经过1到k个点的最短距离(k表示阶段),动态转移方程就是d[k, i, j] = min(d[k, i, j], d[k - 1, i, k] + d[k - 1, k, j]), 优化后变成 d[i, j] = min(d[i, j], d[i, k] + d[k, j])。我们以节点k为中介点,以节点i为起点,节点j为目标点,判断由起点i经由中介点k到达目标点j的代价值,是否小于由起点i直接到目标点j的代价值,若小于,则将从起点i到目标点j的代价值d[i][j]更新为d[i][k]+d[k][j]。


        


#include<iostream>
#include<algorithm>
#include<cstring>
 
using namespace std;
 
const int N = 210, INF = 1e9;
 
int n, m, Q;
int d[N][N];
 
void floyd()
{
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
 
int main()
{
    cin >> n >> m >> Q;
    
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i == j) d[i][j] = 0;
            else d[i][j] = INF;
            
    while(m--)
    {
        int a, b, c;
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    
    floyd();
    
    while(Q--)
    {
        int x, y;
        cin >> x >> y;
        
        if(d[x][y] > INF / 2) puts("impossible");//存在负权边
        else cout << d[x][y] << endl;
    }
    
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值