概率
Freopen
这个作者很懒,什么都没留下…
展开
-
「PKUWC2018」猎人杀(分治FFT)
题目首先这个概率不太好算。我们换一种方式:每次可以向已经死了的猎人开枪。那么可以发现最后一个死的猎人的概率分布是不变的。所以我们现在可以直接求出每次开枪时某一个人被射中的概率pip_ipi。然后容斥求出某个人是最后一个死的概率:枚举哪些人是一定在这个人之后死的:设这些人的概率和为QQQ则我们要求的概率是∑i=1p1(1−p1−Q)i−1=p11−p1−Q\sum_{i=1} p_1(1-p_1-Q)^{i-1} = \frac {p_1}{1-p_1-Q}∑i=1p1(1−p1−Q)原创 2020-08-09 15:42:56 · 566 阅读 · 0 评论 -
CF280C Game on Tree(期望的线性性)
题目给出一棵树,每次随机等概率选择一未染黑的点,将它及其子树染黑。问期望多少次操作可以将树全部染黑。n<=1e5n<=1e5n<=1e5期望操作次数 -> 每个点的期望操作次数之和 -> 每个点被操作的概率之和 -> ∑i1depi\sum_{i} \frac 1{dep_i}∑idepi1我真的没有在水博客。AC Code\rm AC...原创 2019-12-13 17:30:02 · 116 阅读 · 0 评论 -
Luogu P3600 随机数生成器(期望和概率dp)
题目不得不说,一minminmin一maxmaxmax加一个期望把我搞晕了。其实这个题它和你说答案为整数其实就可以想到枚举答案,从而把期望问题化为概率问题。E(x)=∑i=1XiP(x=i)=∑i=1Xi(P(x&amp;gt;=i)−P(x&amp;gt;=i+1))E(x) = \sum_{i=1}^XiP(x=i)=\sum_{i=1}^Xi\left(P(x&amp;gt;=i)-P...原创 2019-03-10 20:58:39 · 335 阅读 · 0 评论 -
Luogu P3830 SHOI2012 随机树
1原创 2019-03-11 15:07:49 · 120 阅读 · 0 评论 -
LG P4548 [CTSC2006]歌唱王国(概率生成函数+KMP求border)
题目设F(x)=∑i=0∞P(长度为i时结束)xiF(x)=\sum_{i=0}^{\infty} P(长度为i时结束)x^iF(x)=∑i=0∞P(长度为i时结束)xiG(x)=∑i=0∞P(长度为i时未结束)xiG(x)=\sum_{i=0}^{\infty} P(长度为i时未结束)x^iG(x)=∑i=0∞P(长度为i时未结束)xi∵P(长度为i时结束)+P(长度为i时未结束)=P...原创 2019-04-03 16:33:50 · 187 阅读 · 0 评论 -
BZOJ 2554 Color(条件概率)
题目:有n个球排成一列,每个球都有一个颜色,用A-Z的大写字母来表示,我们每次随机选出两个球ball1,ball2,使得后者染上前者的颜色,求期望操作多少次,才能使得所有球的颜色都一样?n<=104n<=10^4n<=104首先可以枚举最后的颜色是哪一种,那么每个球就要么是该种颜色,要么不是。然后我们需要求 ∑\sum∑在最后是该种颜色的条件概率下的条件期...原创 2019-07-21 17:00:37 · 286 阅读 · 0 评论