容斥
Freopen
这个作者很懒,什么都没留下…
展开
-
锦标赛游戏
题目描述 YJC 很喜欢玩游戏,今天他决定和朋友们玩锦标赛游戏。 锦标赛游戏的规则是这样的:一共有 i(1≤i≤n)个人参与游戏,每个人都编上号(之后用 编号代替人)。 任意两个人之间都要进行一场比赛(即单循环赛制),每一场比赛双方获胜的 概率都是 0.5。 对于两个人 x 和 y(1≤x,y≤i),如果 x=y 或存在一个序列(a1,a2,…,am)(m≥2), 满足 a1战胜了 a2,a2战...原创 2018-10-22 08:40:26 · 360 阅读 · 0 评论 -
NOIP模拟赛 太阳神
太阳神拉很喜欢最小公倍数,有一天他想到了一个关于最小公倍 数的题目。 求满足如下条件的数对(a,b)对数:a,b 均为正整数且a,b<=n 而 lcm(a,b)>n。其中的lcm 当然表示最小公倍数。答案对1,000,000,007 取模 n<=10000000000 换个方向,求lcm(a,b)<=n的对数。 设gcd(a,b) = d sigma([a/d * b/d ...原创 2018-10-22 12:24:07 · 472 阅读 · 0 评论 -
Codeforces 1097 F
有n(<=100000)个可重集合 有4种操作: 1.将x集合置为 !只有 ! v一个数 2.将x集合置为y+z 3.将x集合置为y∘zy \circ zy∘z 其中(y∘z)=gcd(a,b)∣a∈y,b∈z(y \circ z) = {\gcd(a,b)|a \in y ,b \in z}(y∘z)=gcd(a,b)∣a∈y,b∈z 4.求x集合中值为v的元素的奇偶性。 题解: 因为是...原创 2019-01-05 20:25:06 · 400 阅读 · 0 评论 -
BZOJ 4596 [SHOI2016]黑暗前的幻想乡
题目 这个我觉得可以加强:求恰好由k个建筑公司施工的方案数。 广义容斥定理更能区分出选手是否真的会容斥还是只会个公式和小学奥数锻炼出来的直觉。 当练习O(n3)O(n^3)O(n3)求行列式了。 #include<bits/stdc++.h> #define maxn 18 #define maxm 400 #define mod 1000000007 using namespace ...原创 2019-03-05 17:41:57 · 181 阅读 · 0 评论 -
51nod 1943 联通期望
在一片大海上有n个岛屿,规划建设mmm座桥,第i座桥的成本为zizizi,但由于海怪的存在,第i座桥有pipipi的概率不能建造。 求在让岛屿尽量联通的情况下,期望最小成本为多少。 尽量联通:在对每座桥确定能否建造的情况下,对于任意两个岛屿,如果存在一种建桥方案使得它们联通,那么它们必须联通。 n&lt;=14,m&lt;=(2n)n&lt;=14,m&lt;=\b...原创 2019-03-18 16:35:50 · 303 阅读 · 1 评论 -
51nod 1843 排列合并机(组合DP)
小C有一个合并排列机,它可以合并两个长度为n的排列A,B。 合并一共有2*n步,一开始答案的数列为空,每一步有两个选项: (1).若A不为空,则你可以删掉A开头的元素,放到答案数列的末尾。 (2).若B不为空,则你可以删掉B开头的元素,放到答案数列的末尾。 以上两个选项每一步只能选一个 小C不喜欢重复的东西,定义两个排列的价值f(A,B)f(A,B)f(A,B)为他们合并可以生成的答案数列的种数 ...原创 2019-07-26 16:48:57 · 305 阅读 · 0 评论 -
NOIP模拟赛 乘积(容斥计数)
n<=1e9,m<=3e5n<=1e9,m<=3e5n<=1e9,m<=3e5 题解: 具体来说就是先类莫比乌斯反演一波(这个关于倍数的莫比乌斯反演过程可以用经典的补集转化O(nlogn)O(n\log n)O(nlogn)代替,于是就NOIP了),然后就变成求d∣gcdd | gcdd∣gcd的prodprodprod,然后可以分别求出每个质因数及质因数的...原创 2019-10-04 16:16:23 · 193 阅读 · 0 评论