自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 资源 (1)
  • 收藏
  • 关注

转载 mish激活函数

直接看Mish的代码会更简单一点,简单总结一下,Mish=x * tanh(ln(1+e^x))。其他的激活函数,ReLU是x = max(0,x),Swish是x * sigmoid(x)。Mish激活函数无边界(即正值可以达到任何高度)避免了由于封顶而导致的饱和。理论上对负值的轻微允许允许更好的梯度流,而不是像ReLU中那样的硬零边界。最后,可能也是最重要的,目前的想法是,平滑的激活函数允许更好的信息深入神经网络,从而得到更好的准确性和泛化。尽管如此,我测试了许多激活函数,它们...

2020-12-03 15:04:35 5938

原创 pytorch中的mean,max操作

x=torch.arange(15).view(5,3) x=x.float() x_mean=torch.mean(x,dim=0,keepdim=True)(表示每一列的平均数) x_mean0=torch.mean(x,dim=1,keepdim=True)(表示每一行的平均数) x_mean:6 7 8 x_mean0: 1471013

2020-09-27 22:25:08 733

转载 卷积神经网络的卷积过程

卷积核,以及卷积核channel数的理解每一个卷积核的大小,为长宽,深度。长,宽自定义,卷积核输入通道数由上一层卷积核的个数或者输入图片的channel数决定。例如:如果上一层就是输入,输入为灰度图像,卷积核的输入通道数为1。输入为rgb图像,卷积核的深度为3。如果上一层为卷积层,卷积核的个数,即channel数。注:(1)经过一个卷积核的输出,必然为一个特征图。(2)卷积核的深度只和上一层的channel数相关,卷积核的深度就等于上一层的channel数(3)卷积核的个数,卷积核的channe

2020-09-27 13:19:32 1731 1

转载 NON-LOCAL-注意力机制

什么是视觉中的注意力机制?计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息。近几年来,深度学习与视觉注意力机制结合的研究工作,大多数是集中于使用掩码(mask)来形成注意力机制。掩码的原理在于通过另一层新的权重,将图片数据中关键的特征标识出来,通过学习训练,让深度神经网络学到每一张新图片中需要关注的区域,也就形成了注意力。注意力机制一种是软注意力(soft attention),另一种则是强注.

2020-09-26 21:17:29 16595 2

转载 Random Forest(随机森林)

Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。1. 单棵决策树的构建:(1)训练样例的选择令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。(2)构建决策树令训练样例的输入特征的个数为M,我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,且m远远小于M。然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。...

2020-08-06 14:28:46 330

转载 faster_rcnn_r50_fpn_1x.py配置文件

一、简介在使用mmdetection对模型进行调优的过程中总会遇到很多参数的问题,不知道参数在代码中是什么作用,会对训练产生怎样的影响,这里我以faster_rcnn_r50_fpn_1x.py和cascade_rcnn_r50_fpn_1x.py为例,简单介绍一下mmdetection中的各项参数含义二、faster_rcnn_r50_fpn_1x.py配置文件首先介绍一下这个配置文件所描述的框架,它是基于resnet50的backbone,有着5个fpn特征层的faster-RCNN目标检.

2020-06-19 16:36:17 3120

转载 目标检测评价指标AP50,AP60

在目标检测中,我们常用AP和mAP来评价模型的好坏,但是在很多论文中出现了AP50,AP60等指标,这是什么呢?AP是指average precision,平均精确率,即多类预测的时候每一类的precision取平均,类似地还有AR,平均召回率。以Cascade R-CNN的一张图为例,AP50,AP60,AP70……等等指的是取detector的IoU阈值大于0.5,大于0.6,大于0.7……等等。可以看到数值越高,精确率越低,表明越难。————————————————版权声明:本文为CSDN

2020-06-18 15:37:40 1099

原创 SSD回归

位置编码和解码✔️ 根据论文的描述,预测和真实的边界框是有一个转换关系的,具体如下:编码:得到预测框相对于default box的偏移量的公式。偏移量都是预测框相对于先验框的数值,编码的过程是ground truth 相对于先验框的偏移值,如果两者都解决先验框,那么我们所预测的预测框就更接近ground truth,该网络所学习到的也就是相对于先验框的偏移值...

2020-06-16 15:32:07 264

原创 fasterrcnn 边框预测

2020-06-15 17:33:51 339

WeChat Image_202001061117281.png

目前精度高的检测器都是基于two-stage,proposal-driven机制,第一阶段生成稀疏的候选对象位置集,第二阶段使用CNN进一步将每个候选位置分为前景或者背景以及确定其类别; 提出一个one-stage检测器可以匹配two-stage检测器在COCO上AP,例如FPN、Mask R-CNN,为了到达这一结果针对训练过程中类别不平衡这个阻碍问题,设计出一个新的loss,focal loss; R-CNN类检测器可以通过two-stage级联和启发式采用来解决class imbalance问题,proposal stage包括:Selective Search、EdgeBoxes、DeepMask、RPN,可以迅速候选区域数目降低过滤大量background样本;在第二个分类stage启发式采样,可以采取的策略有:固定前景和背景的比例1:3或者采用OHEM在线困难样本挖掘,可以用来维持前景和背景样本可操作性平衡; one stage检测器需要处理更大的候选位置集,虽然也应用了同样的启发式采样,但是效率低下因为在训练过程中很容易受到简单背景样本的支配;这种低效率问题是目标检测的典型问题,对此典型的解决方法是bootstrapping、HEM;

2020-01-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除