问题描述
思路和代码
暴力方法是每个节点为根节点,然后判断以该节点为根节点的树是否是二叉搜索树,然后求规模最大的,这种方式的时间复杂度是 O ( N 2 ) O(N^2) O(N2),空间复杂度是 O ( h ) O(h) O(h)。
搜索二叉树左子树所有的数据都小于等于根节点,右子树所有的数据大于等于根节点;定义是递归的。如果左子树,有一个节点不满足,那么整个左子树都不是二叉搜索树,右子树同理。后序遍历的特征是,我们能在访问根节点前,遍历并获取所有左右子树的特性。
我们用LBST表示左子树中,最大的二叉搜索子树的根节点,LSize表示它的个数,LMin表示它的最小值,LMax表示它的最大值。RBST、RSize、RMin和RMax表示右子树对应的值。
那么,如果LBST和RBST中的至少一个不是当前节点root的孩子的话,则需要选择大的那个作为当前最大二叉搜索树;如果都是root的孩子,则左侧需要LMax<=root->val,右侧需要RMin>=root->val,如果满足,则当前节点是目前最大二叉搜索树,否则选择最大的那个孩子;利用后序不断递归求解即可。
#include <iostream>
#include <memory>
#include <algorithm>
const int TAG = -100; // 终止的标记
const int INF = 10000000;
struct Node {
int val;
std::shared_ptr<Node> left{nullptr}, right{nullptr};
Node(int n = 0): val(n), left(nullptr), right(nullptr) {}
};
struct Info {
int Max{-INF}, Min{INF}, Size{0};
};
std::shared_ptr<Node> CreateTreeNode() {
int n;
std::cin >> n;
if (n == TAG) {
return nullptr;
}
auto root = std::make_shared<Node>(n);
root->left = CreateTreeNode();
root->right = CreateTreeNode();
return root;
}
// 后序遍历二叉树,只要某个节点左子树的某个部分不是二叉搜索树,则整个左子树都不是二叉搜索树
std::shared_ptr<Node> MaxSubSearchTree(const std::shared_ptr<Node>& root, Info &info) {
if (root == nullptr) {
info.Size = 0;
info.Max = -INF;
info.Min = INF;
return nullptr;
}
int val = root->val;
auto LBST = MaxSubSearchTree(root->left, info);
int LSize = info.Size;
int LMin = info.Min;
int LMax = info.Max;
auto RBST = MaxSubSearchTree(root->right, info);
int RSize = info.Size;
int RMin = info.Min;
int RMax = info.Max;
info.Min = std::min(LMin, root->val);
info.Max = std::max(RMax, root->val);
if (root->left == LBST && root->right == RBST && LMax <= root->val && RMin >= root->val) {
info.Size = LSize + RSize + 1;
return root;
}
info.Size = std::max(LSize, RSize); // 返回左右子树规模大的那个
return LSize > RSize ? LBST: RBST;
}
void PreOrder(const std::shared_ptr<Node>& root) {
if (root == nullptr) {
return;
}
std::cout << root->val << " ";
PreOrder(root->left);
PreOrder(root->right);
}
int main() {
// 6 1 0 -100 -100 3 -100 -100 12 10 4 2 -100 -100 5 -100 -100 14 11 -100 -100 15 -100 -100 13 20 -100 -100 16 -100 -100
std::cout << "Create Tree:\n";
auto root = CreateTreeNode();
Info info{-INF, INF, 0};
auto p = MaxSubSearchTree(root, info);
PreOrder(p);
return 0;
}
代码输出:
10 4 2 5 14 11 15