PAT甲级1013

PAT甲级1013 求图的连通分量

本题实际上是把检查点去掉后,求解图中连通分量的个数,结果用连通分量的个数减一。连通分量的求解使用并查集,把每一个连通分量的点,在自己所在的分量中找一个结点当做根,最后统计根的个数就行了。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
const int MAXM = 10000000;
int N, M, K, par[MAXN];
struct Arc {
    int u, v;
} G[MAXM];

int Find(int x) {   // 路径压缩的查找
    int s;
    for(s = x; par[s] >= 0; s = par[s]) {}
    while(s != x) {
        int t = par[x];
        par[x] = s;
        x = t;
    }
    return s;
}

void Union(int x, int y) {
    int u = Find(x), v = Find(y);
    int sum = par[u] + par[v];
    if(par[u] < par[v]) {
        par[u] = sum;
        par[v] = u;
    } else {
        par[v] = sum;
        par[u] = v;
    }
}

void graph(int x) { // 检查点x的情况
    memset(par, -1, sizeof(par));
    for(int i = 0; i < M; ++i) {
        int u = G[i].u, v = G[i].v;
        if(u != x && v != x && Find(u) != Find(v)) { // 抛开特殊点
            Union(u, v);
        }
    }
}

int main() {
    cin >> N >> M >> K;
    for(int i = 0; i < M; ++i) {
        cin >> G[i].u >> G[i].v;
    }
    for(int i = 1; i <= K; ++i) {
        memset(par, 0, sizeof(par));
        int k, sum = 0;
        cin >> k;
        graph(k);
        for(int i = 1; i <= N; ++i) {
            if(par[i] < -1 || (par[i] == -1 && i != k)) {  // 注意这里是<, -1的情况说明自己是单独的点
                ++sum;
            }
        }
        cout << sum - 1 << endl;
    }
    return 0;
}
### 关于 PAT 甲级 1024 题目 PAT (Programming Ability Test) 是一项编程能力测试,其中甲级考试面向有一定编程基础的学生。对于 PAT 甲级 1024 题目,虽然具体题目描述未直接给出,但从相似类型的题目分析来看,这类题目通常涉及较为复杂的算法设计。 #### 数据结构的选择与实现 针对此类问题,常用的数据结构包括但不限于二叉树节点定义: ```cpp struct Node { int val; Node* lchild, *rchild; }; ``` 此数据结构用于表示二叉树中的节点[^1]。通过这种方式构建的二叉树能够支持多种遍历操作,如前序、中序和后序遍历等。 #### 算法思路 当处理涉及到图论的问题时,深度优先搜索(DFS)是一种常见的解题策略。特别是当需要寻找最优路径或访问尽可能多的节点时,结合贪心算法可以在某些情况下提供有效的解决方案[^2]。 #### 输入输出格式说明 根据以往的经验,在解决 PAT 类型的问题时,输入部分往往遵循特定模式。例如,给定 N 行输入来描述每个节点的信息,每行按照如下格式:“Address Data Next”,这有助于理解如何解析输入并建立相应的数据模型[^4]。 #### 数学运算示例 有时也会遇到基本算术表达式的求值问题,比如分数之间的加减乘除运算。下面是一些简单的例子展示不同情况下的计算结果: - \( \frac{2}{3} + (-2) = -\frac{7}{3}\) -2) = -\frac{4}{3}\) - \( \frac{2}{3} ÷ (-2) = -\frac{1}{3}\) 这些运算是基于样例提供的信息得出的结果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值