Spark如何在一个SparkContext中提交多个任务

在使用spark处理数据的时候,大多数都是提交一个job执行,然后job内部会根据具体的任务,生成task任务,运行在多个进程中,比如读取的HDFS文件的数据,spark会加载所有的数据,然后根据block个数生成task数目,多个task运行中不同的进程中,是并行的,如果在同一个进程中一个JVM里面有多个task,那么多个task也可以并行,这是常见的使用方式。

考虑下面一种场景,在HDFS上某个目录下面有10个文件,我想要同时并行的去统计每个文件的数量,应该怎么做? 其实spark是支持在一个spark context中可以通过多线程同时提交多个任务运行,然后spark context接到这所有的任务之后,通过中央调度,在来分配执行各个task,最终任务完成程序退出。

下面就来看下如何使用多线程提交任务,可以直接使用new Thread来创建线程提交,但是不建议这么做,推荐的做法是通过Executors线程池来异步管理线程,尤其是在提交的任务比较多的时候用这个会更加方便。

核心代码如下:

Java代码 收藏代码
def main(args: Array[String]): Unit = {

val sparkConf=new SparkConf()
//实例化spark context
val sc=new SparkContext(sparkConf)
sparkConf.setAppName(“multi task submit “)
//保存任务返回值
val list=new util.ArrayListFuture[String]
//并行任务读取的path
val task_paths=new util.ArrayListString
task_paths.add(”/tmp/data/path1/”)
task_paths.add("/tmp/data/path2/")
task_paths.add("/tmp/data/path3/")

//线程数等于path的数量
val nums_threads=task_paths.size()
//构建线程池
val executors=Executors.newFixedThreadPool(nums_threads)
for(i<-0 until nums_threads){
val task= executors.submit(new Callable[String] {
override def call(): String ={
val count=sc.textFile(task_paths.get(i)).count()//获取统计文件数量
return task_paths.get(i)+" 文件数量: "+count
}
})

list.add(task)//添加集合里面
}
//遍历获取结果
list.asScala.foreach(result=>{
log.info(result.get())
})
//停止spark
sc.stop()

可以看到使用scala写的代码比较精简,这样就完成了一个并行task提交的spark任务,最后我们打包完毕后,上传到linux上进行提交,命令如下:

Java代码 收藏代码
/opt/bigdata/spark/bin/spark-submit
–class MultiTaskSubmit
–master yarn
–deploy-mode cluster
–executor-cores 3
–driver-memory 1g
–executor-memory 1g
–num-executors 10
–jars $jars task.jar

最后需要注意一点,在线程里面调用的方法如果包含一些全局加载的属性,最好放在线程的成员变量里面进行初始化,否则多个线程去更改全局属性,有可能会造成一些未知的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值