ZJUT12 Day2

ZJUT12 Day2

1、CF 963A Alternating Sum

tags:数学

一开始观察式子想到左右同乘 ( a − b ) (a-b) (ab)。因为 ( a − b ) Σ i = 0 n a n − i b i = a n + 1 − b n + 1 (a-b)\Sigma_{i=0}^na^{n-i}b^i=a^{n+1}-b^{n+1} (ab)Σi=0nanibi=an+1bn+1

然后发现化简出来的结果是 s 0 a n + 1 − s n b n + 1 + Σ i = 0 n − 1 ( s i + 1 − s i ) a n − i b i + 1 s_0a^{n+1}-s_nb^{n+1}+\Sigma_{i=0}^{n-1}(s_{i+1}-s_i)a^{n-i}b^{i+1} s0an+1snbn+1+Σi=0n1(si+1si)anibi+1,前面很好算,后面一部分还是裂了。如果能降低大部分运算规模比如 n n n变成 n 2 n\over2 2n就可以分治了,可惜分不得。

实际上这玩意可以分成若干块计算。因为 k k k的规模比较小,所以我们可以考虑先把前 k k k项的值计算出来记作 Z Z Z。那么 0   k − 1 0\text{~}k-1 0 k1的值已经算出来了, k   2 k − 1 k\text{~}2k-1 k 2k1的值实际上只需要把 Z Z Z乘上 ( b a ) k ({b\over{a}})^k (ab)k,这个观察式子就可以看出来。当时做题的时候没想到。

那么同理可以得到后面若干块的式子,之后 Z Z Z可以全部提出来,只剩一个等比数列求和。

不过要注意的是这里 ( b a ) k ({b\over a})^k (ab)k可能会等于1,并且此时 a a a b b b可能不相等,因为实际上这个式子等于 b b b乘上 a − 1 a^{-1} a1 k k k次方。特判一下就好了。

其实这个做法不一定要求 k k k n + 1 n+1 n+1的倍数。不是倍数的时候可以先预处理出前 k k k个式子的值,然后在最后一块去找到对应的值加上即可。不过稍微麻烦了一点。

复杂度 O ( k + C ) O(k+C) O(k+C) C C C是一个稍微有点大的常数。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 9;
const int MAXK = 1e5 + 10;
char s[MAXK];
ll qpow(ll a, ll b)
{
    ll res = 1; a %= MOD;
    while (b)
    {
        if (b & 1) res = (res * a) % MOD;
        a = (a * a) % MOD; b >>= 1;
    }
    return res;
}
int main()
{
    ll n, a, b, k; cin >> n >> a >> b >> k;
    scanf("%s", s);
    ll Z = 0;
    for (int i = 0; i < k; ++i)
        Z = (Z + (s[i] == '+'? 1: -1) * qpow(a, n - i) * qpow(b, i) % MOD) % MOD;
    ll q = (qpow(b, k) * qpow(qpow(a, MOD - 2), k) % MOD + MOD) % MOD;
    if (q == 1)
        cout << ((n + 1) / k * Z % MOD + MOD) % MOD << endl;
    else
        cout << (Z * (1 - qpow(q, (n + 1) / k)) % MOD * qpow(1 - q, MOD - 2) % MOD + MOD) % MOD << endl;
    return 0;
}

2、CF 1137B Camp Schedule

tags:字符串,KMP,哈希

因为要子串出现次数最多,那么肯定要尽量提高 0 , 1 0,1 0,1出现的重复率。

如果我们已经排好了一个子串,很显然我们不可能再在后面从头开始排,这样子需要的数字个数是整个子串的长度。所以尝试把后面的子串往前缩,就发现要求最长公共前后缀长度。

正解是KMP的next[m],求出来即可。这题不难。

复杂度 O ( n + m ) O(n+m) O(n+m)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 5e5 + 10;
char s[MAXN], t[MAXN];
char ans[MAXN];
int nxt[MAXN];
int cnt[2];
int main()
{
    scanf("%s%s", s + 1, t + 1);
    int n = strlen(s + 1), m = strlen(t + 1);
    for (int i = 2, j = 0; i <= m; ++i)
    {
        while (j > 0 && t[j + 1] != t[i]) j = nxt[j];
        if (t[j + 1] == t[i]) ++j;
        nxt[i] = j;
    }
    for (int i = 1; i <= n; ++i) cnt[s[i] - '0']++;
    int pos = 1;
    for (int j = 1; ; ++pos)
    {
        if (cnt[t[j] - '0'] > 0) ans[pos] = t[j], --cnt[t[j] - '0'];
        else break;
        if (j == m) j = nxt[j] + 1;
        else ++j;
    }
    while (cnt[0]) ans[pos++] = '0', --cnt[0];
    while (cnt[1]) ans[pos++] = '1', --cnt[1];
    cout << ans + 1 << endl;
    return 0;
}

那么为什么我做这道水题呢?其实是想练一下哈希,因为学完之后还没有实际上手操作过。

结果这题TM刚好卡了自然溢出。

我就一直在那边纳闷这算法如此完美怎么会WA,明明KMP都已经过了…

卡了两个小时,换了各种各样奇怪的质数,甚至尝试了双哈希还是炸了。百思不得其解,去洛谷翻题解发现是卡了自然溢出。换了个模数一下就过了。气死我了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int MAXN = 5e5 + 10, P = 13331, MOD = 1e9 + 7;
char s[MAXN], t[MAXN];
char ans[MAXN];
int cnt[2];
int main()
{
    scanf("%s%s", s + 1, t + 1);
    int n = strlen(s + 1), m = strlen(t + 1);
    ll prev = 0, latt = 0, powP = 1; int maxi = 0;
    
    for (int i = 1; i <= m - 1; ++i)
    {
        prev = (prev * P % MOD + t[i] - '0') % MOD;
        latt = ((t[m - i + 1] - '0') * powP % MOD + latt) % MOD;
        powP = powP * P % MOD;
        if (prev == latt) maxi = i;
    }
 
    for (int i = 1; i <= n; ++i) cnt[s[i] - '0']++;
    int pos = 1;
    for (int j = 1; ; ++pos)
    {
        if (cnt[t[j] - '0'] > 0) ans[pos] = t[j], --cnt[t[j] - '0'];
        else break;
        if (j == m) j = maxi + 1;
        else ++j;
    }
    while (cnt[0]) ans[pos++] = '0', --cnt[0];
    while (cnt[1]) ans[pos++] = '1', --cnt[1];
    cout << ans + 1 << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值