Notes on Convolutional Neural Networks (from deeplearning.ai) WEEK 2

Week2: Deep convolutional models: case studies

1. Three Classic CNNs

1.1 LeNet-5

Simon, H. and K. Bart (2001). GradientBased Learning Applied to Document Recognition. Intelligent Signal Processing, IEEE: 306-351.
在这里插入图片描述

1.2 AlexNet

Alex, K., et al. (2012). “ImageNet Classification with Deep Convolutional Neural Networks.” 1097–1105.
在这里插入图片描述

1.3 VGG - 16

Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition
在这里插入图片描述

2. Advanced CNN - Resnets

He, K., et al. (2016). “Deep Residual Learning for Image Recognition.”

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. Network in Network and 1 × {\times} × 1 convolutions

Lin et al., 2013.Network in network

  • 神经网络中的神经网络理解:如下图所示,将输入看做36个切条,输出看作36个切条,其中每一个输出切条都是由#filters个1*1的卷积核与一个输入切条进行“矩阵乘法”得来的,该过程相当于全连接神经网络中的一层。因此该卷积层一共包含了36个并联的全连接网络层,将36个输入切条,变成36个输出切条,组合成了一个卷积层。
    在这里插入图片描述
  • 使用该方法可以缩减网络的channel数,即 n C {n_C} nC
    在这里插入图片描述

4. Inception Network - GoogleNet

Szegedy, C., et al. (2015). “Going Deeper With Convolutions.”

  • 将所有的核、pool层的选择放入一层中,让神经网络自己选择合适的组合。
    在这里插入图片描述
  • 拿出其中 5 × 5 {5 \times 5} 5×5的部分,分析计算次数:
  • 计算次数的计算方法:
    输 出 的 v o l u m e 的 元 素 个 数 × 核 的 元 素 个 数 {输出的volume的元素个数\times 核的元素个数} volume×
    28 × 28 × 32 × 5 × 5 × 192 = 120 M i l l i o n 28\times28\times32 \times 5\times5\times192=120Million 28×28×32×5×5×192=120Million
    在这里插入图片描述
  • 使用1*1卷积核后:
    ( 28 × 28 × 16 × 1 × 1 × 192 ) + ( 28 × 28 × 32 × 5 × 5 × 16 ) = 12.4 M (28\times28\times16\times1\times1\times192) + (28\times28\times32\times5\times5\times16)=12.4M (28×28×16×1×1×192)+(28×28×32×5×5×16)=12.4M
  • 因为channel数先减少后增加,因此该层也叫 bottleneck layer
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

5. Transfer Learning迁移学习

  • 如果你有一个小的数据集,想训练一个分类三种类别的神经网络:Tigger,Misty,Neither,最好的做法是使用别人的网络及权重,固定除了softmax层的权重,只用自己的训练集训练softmax层;或者将训练集输入别人的神经网络(带权重),计算得到softmax前的一层的数据,存入硬盘,然后将其作为输入,只训练softmax层
    在这里插入图片描述
  • 如果数据集相对较大,则可以固定相对较少的参数,训练更多的参数,而不仅仅是训练softmax层
    在这里插入图片描述
  • 如果数据集很大,则可以将所有别人的参数作为初始化,训练所有的参数。
    在这里插入图片描述

6. Data Augmentation

在这里插入图片描述

  • PCA Color Augmentation: 使用主成分分析,对RGB中的主成分元素进行大范围shifting,次要成分进行小范围shifting
    在这里插入图片描述
    在这里插入图片描述

7. Conclusion

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值