希尔排序 ShellSort
当增量d=1时,已经排好序了,不需要继续循环。
#include <stdio.h>
void println(int array[], int len)
//打印数组
{
int i = 0;
for(i=0; i<len; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
void ShellSort(int array[], int len) // O(n*log(n))
//希尔排序
{
int i = 0;
int j = 0;
int k = -1;
int temp = -1;
int gap = len; //分组间隔
do
{
gap = gap / 3 + 1;
//gap的写法最终必须为1,gap=1时相当于插入排序
//对每个组的元素进行插入排序
for(i=gap; i<len; i+=gap)
{
k = i;
temp = array[k];
for(j=i-gap; (j>=0) && (array[j]>temp); j-=gap)
{
array[j+gap] = array[j];
k = j;
}
array[k] = temp;
}
}while( gap > 1 );
}
int main()
{
int array[] = {21, 25, 49, 25, 16, 8};
int len = sizeof(array) / sizeof(*array);
println(array, len);
ShellSort(array, len);
println(array, len);
return 0;
}
gap = gap / 3 + 1; 中的3,并不是因为要分为3个组的元素,而是这样写的平均效率高。如果写成gap = gap / 5 + 1; 也可以。但是,gap的最终结果必须为1。
希尔排序时间复杂度为O(n*logn),但是不稳定。
快速排序 QuickSort
首先对无序的记录序列进行“一次划分”,之后分别对分割所得两个子序列“递归”进行快速排序。
代码编写:
#include <stdio.h>
void println(int array[], int len)
//打印数组
{
int i = 0;
for(i=0; i<len; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
void swap(int array[], int i, int j)
//交换两个元素
{
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
int partition(int array[], int low, int high)
//划分的过程,low为最左端,high为最右端
//以第一个元素为基准,左侧为小于它的元素,右侧为大于它的元素
{
int pv = array[low];
while( low < high )
{
while( (low < high) && (array[high] >= pv))
//判断右侧元素是否比第一个元素大
{
high--;
}
swap(array, low, high);
while( (low < high) && (array[low] <= pv))
//判断左侧元素是否比第一个元素小
{
low++;
}
swap(array, low, high);
}
//返回基准元素的位置
return low;
}
void QSort(int array[], int low, int high)
//快速排序递归算法
{
if( low < high )
{
int pivot = partition(array, low, high);
//获取中间的位置
QSort(array, low, pivot-1);
QSort(array, pivot+1, high);
}
}
void QuickSort(int array[], int len) // O(n*logn)
//快速排序,输入数组和数组的长度
{
QSort(array, 0, len-1);
}
int main()
{
int array[] = {21, 25, 49, 25, 16, 8};
int len = sizeof(array) / sizeof(*array);
println(array, len);
QuickSort(array, len);
println(array, len);
return 0;
}
经过数学证明,快速排序时间复杂度为O(n*logn),但是不稳定。
归并排序 MergeSort
将3个有序序列归并为一个新的有序序列,称为3路归并。
将多个有序序列归并为一个新的有序序列,称为多路归并。
检测两个有序序列A和B,C为归并后的新的有序序列:
当 i和 j都在两个序列内变化时, 根据关键码的大小将较小的数据元素排放到新序列 k所指位置中.
当 i 与 j 中有一个已经超出序列时,将另一 个序列中的剩余部分照抄到新序列中.
代码编写:
#include <stdio.h>
#include <malloc.h>
void println(int array[], int len)
//打印数组
{
int i = 0;
for(i=0; i<len; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
void swap(int array[], int i, int j)
//交换数组元素
{
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
void Merge(int src[], int des[], int low, int mid, int high)
//本函数实现对src数组中两部分元素的归并排序,赋值给des数组
//将src数组由mid下标分成两部分,归并到des数组中
{
int i = low;
int j = mid + 1;
int k = low;
while( (i <= mid) && (j <= high) )
{
if( src[i] < src[j] )
{
des[k++] = src[i++];//先赋值后加加
}
else
{
des[k++] = src[j++];
}
}
while( i <= mid )//将剩余的元素复制到des中
{
des[k++] = src[i++];
}
while( j <= high )//将剩余的元素复制到des中
{
des[k++] = src[j++];
}
}
void MSort(int src[], int des[], int low, int high, int max)
//将src中的元素进行排序,然后将排好序的元素赋值给des数组
//low和high分别为数组最左端和最右端下标,max为数组长度
{
if( low == high )
{
des[low] = src[low];
}
else
{
int mid = (low + high) / 2;//找中间值
int* space = (int*)malloc(sizeof(int) * max);//建立辅助空间
if( space != NULL )//若分配成功
{
MSort(src, space, low, mid, max);//将src前部分归并到space
MSort(src, space, mid+1, high, max);//将src后部分归并到space
Merge(space, des, low, mid, high);//将space中的元素归并到des
}
free(space);
}
}
void MergeSort(int array[], int len) // O(n*logn)
//归并排序算法
{
MSort(array, array, 0, len-1, len);
}
int main()
{
int array[] = {21, 25, 49, 25, 16, 8};
int len = sizeof(array) / sizeof(*array);
println(array, len);
MergeSort(array, len);
println(array, len);
return 0;
}
小结
希尔排序,快速排序和归并排序将排序算法的时间复杂度提高到了O(n*logn)。
希尔排序和快速排序的排序结果是不稳定的。
归并排序的排序结果是稳定的。
口诀:
选快希堆不稳(是不稳定的排序),
堆归选基不变(运行时间不发生变化,与初始状态无关)
基数排序 堆排序