南晨的深度学习专栏
文章平均质量分 61
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。本专栏包含深度学习的知识但不仅限于深度学习。
南晨Inc
这个作者很懒,什么都没留下…
展开
-
机器学习实战KNN部分代码改写
对机器学习实战中numpy及python部分函数改写原创 2023-01-02 13:19:21 · 207 阅读 · 1 评论 -
使用opencv将mnist数据集保存在计算机上
许多人在使用mnist数据集时都是直接调用,那么如果想将mnist数据集保存在本机中该怎么做呢首先我们要知道mnist数据集中的数据时什么样的如下所示,为训练集中的第一张图片的部分数据,其为一维数组,共有784个数(这个矩阵表达的数好像是3)然后需要将此一维数组转换为二维矩阵,但时如果就直接进行转换或是转换成二维数组之后也不对数据进行改变的话,保存为图片之后是无法肉眼进行识别的。所以我们要将所有大于0的数改成255.这样就能够肉眼识别了。如下图将二维数组改变之后就可以使用open原创 2020-05-13 22:59:13 · 415 阅读 · 0 评论 -
TensorFlow深度学习作业一----多元回归
下表是某种商品的需求量(y,吨)、价格(x1,元/千克)和消费者收入(x2,元)观测值。 序号 X1 X2 y 1 5 1000 100 2 7 600 ...原创 2019-03-27 23:55:46 · 925 阅读 · 0 评论 -
TensorFlow深度学习作业二--癌症转移
下表是肾癌标本资料(数据来源于《卫生统计学》第四版第11章): 序号 X1 X2 X3 X4 X5 y 1 59 2 43.4 2 ...原创 2019-03-27 23:45:47 · 929 阅读 · 0 评论 -
在猫狗分类中使用数据增强
学习样本过少就会导致过拟合问题的产生,如果有足够的样本数量的支持,那么模型就能够观察到所有的分布情况,就永远不会导致过拟合。,数据增强是从现有的训练样本中生成更多的训练数据,其方法是利用多种能够生成可信图像的随机变换来增加样本。其目标是,模型在训练时不会查看到完全相同的图像。折就能让模型观察到数据的更多内容。#接着上一篇博客#rotation_range:表示图像随机旋转的角度范围#wi...原创 2019-03-11 22:58:04 · 686 阅读 · 0 评论 -
kaggle--猫狗数据集分类
首先需要下载相关的数据集,可从kaggle官网进行下载下载的数据集分为train和test两部分,而train数据集中的图像并非都是连续的,所以若要截取部分图像进行训练,则应注意首先创建属于自己的数据集,此次学习并没有用到所以的数据,而只有2000张训练图像,1000张测试图像和1000张验证图像import os,shutil#原始训练数据存放位置,在当前目录下的dog-and-...原创 2019-03-08 23:48:54 · 11971 阅读 · 0 评论 -
深度学习--卷积神经网络mnist数据集
mnist数据集from keras import layersfrom keras import modelsmodel = models.Sequential()#padding为填充,若值为valid则对边界数据不处理,若为same则保留边界处的卷积结果,#通常会使输入和输出的shape相同,为valid时输出为(26,26,32)#设卷积神经网络处理大小为(28,28,1...原创 2019-03-02 23:50:15 · 882 阅读 · 0 评论 -
评估机器学习模型
为什么要分训练集、验证集和测试集评估模型的重点是将数据划分为3个集合:训练集、验证集和测试集。在训练数据上训练模型,在验证数据上评估模型。一旦找到最佳参数,就在测试数据上测试。之所以划分为3个集合而不是只有训练集和测试集,是因为在开发模型时是需要调节模型配置的,如层数或每层的大小(称为模型的超参数)。这个调节过程需要使用模型在验证数据上的性能作为反馈信息,这个调节过程本质上就是一种学习:在某...原创 2019-02-26 22:28:36 · 421 阅读 · 0 评论 -
深度学习回归问题--预测房价
环境使用keras为前端,TensorFlow为后端背景: 波士顿房价数据集统计了当时教区部分的犯罪率、房产税等共计13个指标,统计出房价,试图能找到那些指标与房价的关系。首先加载数据集from keras.datasets import boston_housing(train_data, train_targets), (test_data, test_targets)...原创 2019-02-25 01:12:59 · 8224 阅读 · 0 评论 -
深度学习多分类问题--路透社数据集
环境使用keras为前端,TensorFlow为后端本次构建一个网络,将路透社新闻划分为46个类别。因为有多个类别,所以这是多分类问题。每个数据点只能划分到一个类别,所以,这是一个单标签,多分类问题。如果每个数据点可以划分到多个类别,那么就是多标签,多分类问题。首先加载数据集from keras.datasets import reuters#限定为前10000个最常出现的单词(...原创 2019-02-24 20:14:02 · 3843 阅读 · 0 评论 -
深度学习二分类问题--IMDB数据集
环境使用keras为前端,TensorFlow为后端 IMDB数据集包含50000条评论,25000条用于训练,25000条用于测试,训练集和测试集都包含了50%的正面评论和负面评论首先是加载IMDB数据集:from keras.datasets import imdb(train_data, train_labels), (test_data, test_labels) =...原创 2019-02-21 23:57:30 · 3509 阅读 · 0 评论