一句话题意就是:
给定一个字符串,求最长重复子串,这两个子串不能重叠。
首先因为N太大了(1<=N<=20000),所以我们可以考虑用后缀数组
算法分析:
先二分答案,把题目变成判定性问题:1、判断是否存在两个长度为k的子串是相同的;2、不重叠。先将后缀进行进行基数排序,把排序后的后缀分成若干组,其中每组的后缀之间的height值都不小于k。例如,字符串为“aabaaaab”,当k=2时,后缀分成了4组,如图所示
容易看出,有希望成为最长公共前缀不小于k的两个后缀一定在同一组。然后对于每组后缀,只须判断每个后缀的sa值的最大值和最小值之差是否不小于k,就知道是否重叠。如果有一组满足,则说明存在,否则不存在。整个做法的时间复杂度为O(nlogn)。
代码
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
inta[210000],wr[210000],mc[210000],JS[210000],sa[210000],y[210000],height[210000];
bool cmp(int k1,int k2,int ln){
return wr[k1]==wr[k2]&&wr[k1+ln]==wr[k2+ln];
}
void get_sa(int n,int m){//构建SA后缀数组(即:排第几的是谁)
inti,k,p,ln;
//memcpy(mc,a,sizeof(a));
for(i=1;i<=n;i++)mc[i]=a[i];
//a数组:原字符串,mc名次数组(即:你排第几)
for(i=0;i<=m;i++)JS[i]=0;
for(i=1;i<=n;i++)JS[mc[i]]++;
for(i=1;i<=m;i++)JS[i]+=JS[i-1];
for(i=n;i>=1;i--)sa[JS[mc[i]]--]=i;
//以上四句为基数排序
ln=1;p=0;
//ln为当前子串的长度,p表示有多少不相同的子串
while(p<n)
//如果p等于n,那么函数可以结束。因为在当前长度的字符串中,已经没有相同的字符串,接下来的排序不会改变rank值。
{
for(k=0,i=n-ln+1;i<=n;i++)y[++k]=i;
for(i=1;i<=n;i++)if(sa[i]-ln>0)y[++k]=sa[i]-ln;
for(i=1;i<=n;i++)wr[i]=mc[y[i]];
//数组y保存的是对第二关键字排序的结果。
//数组wr保存的是对第二关键字排序后的mc值
//以下为对第一关键字排序
for(i=0;i<=m;i++)JS[i]=0;
for(i=1;i<=n;i++)JS[wr[i]]++;
for(i=1;i<=m;i++)JS[i]+=JS[i-1];
for(i=n;i>=1;i--)sa[JS[wr[i]]--]=y[i];
memcpy(wr,mc,sizeof(wr));
p=1;mc[sa[1]]=1;
for(i=2;i<=n;i++){
if(!cmp(sa[i],sa[i-1],ln))p++;
mc[sa[i]]=p;
}
//得到新的mc数组。这里要注意的是,可能有多个字符串的rank值是相同的,所以必须比较两个字符串是否完全相同
m=p;ln*=2;
}
a[0]=0;sa[0]=0;
}
void get_he(int n){
inti,j,k=0;
for(i=1;i<=n;i++){
j=sa[mc[i]-1];
if(k)k--;
while(a[j+k]==a[i+k])k++;
height[mc[i]]=k;
}
}
bool check(int n,int k){
intmaxx=sa[1],minn=sa[1];
for(int i=2;i<=n;i++){
if(height[i]<k)maxx=minn=sa[i];
else{
minn=min(minn,sa[i]);
maxx=max(maxx,sa[i]);
if(maxx-minn>k)return true;
}
}
return false;
}
void erfen(int n) //二分
{
intl,r,mid,ans;
l=1;r=n;
while(l<=r)
{
mid=(l+r)/2;
if(check(n,mid))
{
ans=mid;
l=mid+1;
}
else r=mid-1;
}
if(ans>=4)printf("%d\n",ans+1); //题目要求要4个音符相同才可算为音乐元素
else printf("0\n");
}
int main()
{
intn,k,p;
while (scanf("%d",&n)!=EOF)
{
if(n==0)break;
memset(mc,0,sizeof(mc));
memset(a,0,sizeof(a));
memset(sa,0,sizeof(sa));
scanf("%d",&p);
for(int i=1;i<n;i++)
{
scanf("%d",&k);
a[i]=k-p+100;
p=k;
}
get_sa(n-1,200);
get_he(n-1);
erfen(n-1);
}
return 0;
}