中文文本分类问题:THUCNews数据集

1 THUCNews数据集与预处理

1.1 数据集下载

本文采用了清华NLP组提供的THUCNews新闻文本分类数据集的子集
数据下载链接:
THUCNews数据子集:https://pan.baidu.com/s/1hugrfRu 密码:qfud

1.2 数据量

该数据集使用了其中的10个分类,每个分类6500条,总共65000条新闻数据。
类别如下:在这里插入图片描述
数据集共有三个文件,如下:
cnews.train.txt: 训练集(500010条)
cnews.val.txt: 验证集(500
10条)
cnews.test.txt: 测试集(1000*10条)

1.3 数据预处理

1.3.1 导入数据

import pandas as pd
train_data=pd.read_csv('cnews_train.txt',sep='\t',names=['label','content'])
test_data=pd.read_csv('cnews.test.txt',sep='\t',names=['content'])
train_data.info()

在这里插入图片描述
前五个数据样本如下:
在这里插入图片描述

1.3.2 将文字型的label 转为数字label

def read_category(y_train):
    """读取分类目录,固定"""
    categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']
    categories = [x for x in categories]
    cat_to_id = dict(zip(categories, range(len(categories))))
    label_id = []
    for i in range(len(y_train)):
        label_id.append(cat_to_id[y_train[i]])
    return label_id
    
train_target=train_data['label']  
y_label=read_category(train_target)

在这里插入图片描述

2 特征工程

2.1

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值