题目链接
https://www.luogu.org/problemnew/show/P4013
数字梯形问题
先讲一下这道题的边相交指的是连续两次走到同一个点。
第一问:如果点不想交显然边也不相交,所以我们只要把每个点拆成两个点,中间连流量为1,费用为这给点的贡献的边,S连第一行,最后一行连T,第i行连第i+1行,费用为0,流量为INF,最大费用最大流跑一发就行了。
第二问:每个点可以走多次,但是每条边只能走一次,所以把拆点省略,行与行之间连的流量变为1就行了,至于贡献,把这个点的贡献设为入边的费用就行了,S到第一行的费用为第一行的贡献,流量仍为1,最后一行到T的费用为0,注意流量要改为INF,因为每个点可以作为终点多次,因为贡献在倒数第二行流过来的时候算过了。
第三问:可以xjb流,所以把流量改为INF就行了,但是S到第一行的流量仍为1.
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<iostream>
#define LL long long
#define INF (2139062143)
#define N (105)
template <typename T> void read(T&t) {
t=0;
bool fl=true;
char p=getchar();
while (!isdigit(p)) {
if (p=='-') fl=false;
p=getchar();
}
do {
(t*=10)+=p-48;p=getchar();
}while (isdigit(p));
if (!fl) t=-t;
}
int m,n,tot,S,T,h,t,all,ans;
int map[N][N],a[N*N],f[N*N],fare[N*N],nxt[N*N],head[N*N],q[N*N<<2],dis[N*N],from[N*N];
bool vis[N*N];
inline void add(int x,int y,int z,int t){
a[++tot]=y,f[tot]=z,fare[tot]=t,nxt[tot]=head[x],head[x]=tot;
}
inline int spfa(){
memset(dis,-127,sizeof(dis));
dis[S]=0;
vis[S]=1;
h=t=0;
q[++t]=S;
while (h<t){
int u=q[++h];
for (int p=head[u];~p;p=nxt[p]){
if (f[p]&&dis[u]+fare[p]>dis[a[p]]){
dis[a[p]]=dis[u]+fare[p];
from[a[p]]=p;
if (!vis[a[p]]){
vis[a[p]]=1;
q[++t]=a[p];
}
}
}
vis[u]=0;
}
return dis[T];
}
int get(int x,int y){
return (2*m+x-2)*(x-1)/2+y;
}
inline void work1(){
memset(head,-1,sizeof(head));
tot=1;
ans=0;
S=all*2+1,T=all*2+2;
for (int i=1;i<=m;i++){
add(S,i*2-1,1,0);
add(i*2-1,S,0,0);
}
for (int i=1;i<n;i++){
for (int j=1;j<=m+i-1;j++){
int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
add(now*2,p1*2-1,1,0);
add(p1*2-1,now*2,0,0);
add(now*2,p2*2-1,1,0);
add(p2*2-1,now*2,0,0);
add(now*2-1,now*2,1,map[i][j]);
add(now*2,now*2-1,0,-map[i][j]);
}
}
for (int j=1;j<=m+n-1;j++){
int now=get(n,j);
add(now*2-1,now*2,1,map[n][j]);
add(now*2,now*2-1,0,-map[n][j]);
add(now*2,T,1,0);
add(T,now*2,0,0);
}
while (spfa()!=dis[0]){
ans+=dis[T];
int now=T;
while (now!=S){
f[from[now]]--;
f[from[now]^1]++;
now=a[from[now]^1];
}
}
printf("%d\n",ans);
}
void work2(){
memset(head,-1,sizeof(head));
tot=1;
ans=0;
S=all+1,T=all+2;
for (int i=1;i<=m;i++){
add(S,i,1,map[1][i]);
add(i,S,0,-map[1][i]);
}
for (int i=1;i<n;i++){
for (int j=1;j<=m+i-1;j++){
int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
add(now,p1,1,map[i+1][j]);
add(p1,now,0,-map[i+1][j]);
add(now,p2,1,map[i+1][j+1]);
add(p2,now,0,-map[i+1][j+1]);
}
}
for (int j=1;j<=m+n-1;j++){
int now=get(n,j);
add(now,T,INF/100,0);
add(T,now,0,0);
}
while (spfa()!=dis[0]){
ans+=dis[T];
int now=T;
while (now!=S){
f[from[now]]--;
f[from[now]^1]++;
now=a[from[now]^1];
}
}
printf("%d\n",ans);
}
void work3(){
memset(head,-1,sizeof(head));
tot=1;
ans=0;
S=all+1,T=all+2;
for (int i=1;i<=m;i++){
add(S,i,1,map[1][i]);
add(i,S,0,-map[1][i]);
}
for (int i=1;i<n;i++){
for (int j=1;j<=m+i-1;j++){
int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
add(now,p1,INF/100,map[i+1][j]);
add(p1,now,0,-map[i+1][j]);
add(now,p2,INF/100,map[i+1][j+1]);
add(p2,now,0,-map[i+1][j+1]);
}
}
for (int j=1;j<=m+n-1;j++){
int now=get(n,j);
add(now,T,INF/100,0);
add(T,now,0,0);
}
while (spfa()!=dis[0]){
ans+=dis[T];
int now=T;
while (now!=S){
f[from[now]]--;
f[from[now]^1]++;
now=a[from[now]^1];
}
}
printf("%d\n",ans);
}
int main(){
read(m),read(n);
for (int i=1;i<=n;i++){
for (int j=1;j<=m+i-1;j++){
read(map[i][j]);
}
}
all=(m*2+n-1)*n/2;
work1();
work2();
work3();
return 0;
}