网络流24题——19.数字梯形问题

本文详细解析了数字梯形问题的三个子问题,通过构建最大费用最大流模型,使用拆点和调整边流量的方法,实现了从不允许点重复访问到允许任意次数访问的转变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

https://www.luogu.org/problemnew/show/P4013

数字梯形问题

先讲一下这道题的边相交指的是连续两次走到同一个点。
第一问:如果点不想交显然边也不相交,所以我们只要把每个点拆成两个点,中间连流量为1,费用为这给点的贡献的边,S连第一行,最后一行连T,第i行连第i+1行,费用为0,流量为INF,最大费用最大流跑一发就行了。
第二问:每个点可以走多次,但是每条边只能走一次,所以把拆点省略,行与行之间连的流量变为1就行了,至于贡献,把这个点的贡献设为入边的费用就行了,S到第一行的费用为第一行的贡献,流量仍为1,最后一行到T的费用为0,注意流量要改为INF,因为每个点可以作为终点多次,因为贡献在倒数第二行流过来的时候算过了。
第三问:可以xjb流,所以把流量改为INF就行了,但是S到第一行的流量仍为1.

#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<iostream>
#define LL long long
#define INF (2139062143)
#define N (105)
template <typename T> void read(T&t) {
    t=0;
    bool fl=true;
    char p=getchar();
    while (!isdigit(p)) {
        if (p=='-') fl=false;
        p=getchar();
    }
    do {
        (t*=10)+=p-48;p=getchar();
    }while (isdigit(p));
    if (!fl) t=-t;
}
int m,n,tot,S,T,h,t,all,ans;
int map[N][N],a[N*N],f[N*N],fare[N*N],nxt[N*N],head[N*N],q[N*N<<2],dis[N*N],from[N*N];
bool vis[N*N];
inline void add(int x,int y,int z,int t){
    a[++tot]=y,f[tot]=z,fare[tot]=t,nxt[tot]=head[x],head[x]=tot;
}
inline int spfa(){
    memset(dis,-127,sizeof(dis));
    dis[S]=0;
    vis[S]=1;
    h=t=0;
    q[++t]=S;
    while (h<t){
        int u=q[++h];
        for (int p=head[u];~p;p=nxt[p]){
            if (f[p]&&dis[u]+fare[p]>dis[a[p]]){
                dis[a[p]]=dis[u]+fare[p];
                from[a[p]]=p;
                if (!vis[a[p]]){
                    vis[a[p]]=1;
                    q[++t]=a[p];
                }
            }
        }
        vis[u]=0;
    }
    return dis[T];
}
int get(int x,int y){
    return (2*m+x-2)*(x-1)/2+y;
}
inline void work1(){
    memset(head,-1,sizeof(head));
    tot=1;
    ans=0;
    S=all*2+1,T=all*2+2;
    for (int i=1;i<=m;i++){
        add(S,i*2-1,1,0);
        add(i*2-1,S,0,0);
    }
    for (int i=1;i<n;i++){
        for (int j=1;j<=m+i-1;j++){
            int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
            add(now*2,p1*2-1,1,0);
            add(p1*2-1,now*2,0,0);
            add(now*2,p2*2-1,1,0);
            add(p2*2-1,now*2,0,0);
            add(now*2-1,now*2,1,map[i][j]);
            add(now*2,now*2-1,0,-map[i][j]);
        }
    }
    for (int j=1;j<=m+n-1;j++){
        int now=get(n,j);
        add(now*2-1,now*2,1,map[n][j]);
        add(now*2,now*2-1,0,-map[n][j]);
        add(now*2,T,1,0);
        add(T,now*2,0,0);
    }
    while (spfa()!=dis[0]){
        ans+=dis[T];
        int now=T;
        while (now!=S){
            f[from[now]]--;
            f[from[now]^1]++;
            now=a[from[now]^1];
        }
    } 
    printf("%d\n",ans);
}
void work2(){
    memset(head,-1,sizeof(head));
    tot=1;
    ans=0;
    S=all+1,T=all+2;
    for (int i=1;i<=m;i++){
        add(S,i,1,map[1][i]);
        add(i,S,0,-map[1][i]);
    }
    for (int i=1;i<n;i++){
        for (int j=1;j<=m+i-1;j++){
            int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
            add(now,p1,1,map[i+1][j]);
            add(p1,now,0,-map[i+1][j]);
            add(now,p2,1,map[i+1][j+1]);
            add(p2,now,0,-map[i+1][j+1]);
        }
    }
    for (int j=1;j<=m+n-1;j++){
        int now=get(n,j);
        add(now,T,INF/100,0);
        add(T,now,0,0);
    }
    while (spfa()!=dis[0]){
        ans+=dis[T];
        int now=T;
        while (now!=S){
            f[from[now]]--;
            f[from[now]^1]++;
            now=a[from[now]^1];
        }
    } 
    printf("%d\n",ans);
}
void work3(){
    memset(head,-1,sizeof(head));
    tot=1;
    ans=0;
    S=all+1,T=all+2;
    for (int i=1;i<=m;i++){
        add(S,i,1,map[1][i]);
        add(i,S,0,-map[1][i]);
    }
    for (int i=1;i<n;i++){
        for (int j=1;j<=m+i-1;j++){
            int now=get(i,j),p1=get(i+1,j),p2=get(i+1,j+1);
            add(now,p1,INF/100,map[i+1][j]);
            add(p1,now,0,-map[i+1][j]);
            add(now,p2,INF/100,map[i+1][j+1]);
            add(p2,now,0,-map[i+1][j+1]);
        }
    }
    for (int j=1;j<=m+n-1;j++){
        int now=get(n,j);
        add(now,T,INF/100,0);
        add(T,now,0,0);
    }
    while (spfa()!=dis[0]){
        ans+=dis[T];
        int now=T;
        while (now!=S){
            f[from[now]]--;
            f[from[now]^1]++;
            now=a[from[now]^1];
        }
    } 
    printf("%d\n",ans); 
}
int main(){
    read(m),read(n);
    for (int i=1;i<=n;i++){
        for (int j=1;j<=m+i-1;j++){
            read(map[i][j]);
        }
    }
    all=(m*2+n-1)*n/2;
    work1();
    work2();
    work3();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值