用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
Example:
输入:
[[10,16], [2,8], [1,6], [7,12]]
输出:
2
解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
思路+代码+注释:
class Interval {
int start;
int end;
Interval() { start = 0; end = 0; }
Interval(int s, int e) { start = s; end = e; }
}
public int findMinArrowShots(int[][] points) {
/*
思路:last记录上一个区间
按照start从小到大对区间进行排序,如果前一个区间的end>=后一个区间的start那么区间可以合并,合并时取较大start、较小end;否则不能合并,
此时可以用一个弓箭射穿已经合并的区间count++,然后将当前cur的start、end赋给last,继续比较,直到比较完所有区间,最后count++射穿最后一个合并的区间
*/
if (points.length==0)
{
return 0;
}
int count=0;
PriorityQueue<Interval> priorityQueue=new PriorityQueue<>(new Comparator<Interval>() {
@Override
public int compare(Interval o1, Interval o2) {
return o1.start-o2.start;
}
});
for (int[] ints:points
) {
Interval interval=new Interval();
interval.start=ints[0];
interval.end=ints[1];
priorityQueue.add(interval);
}
Interval first=priorityQueue.poll();
int lastS=first.start;
int lastE=first.end;
while (priorityQueue.size()>0)
{
Interval cur=priorityQueue.poll();
if (lastE>=cur.start)
{
if (cur.start>lastS)
{
lastS=cur.start;
}
if (cur.end<lastE)
{
lastE=cur.end;
}
}else {
count++;
lastS=cur.start;
lastE=cur.end;
}
}
count++;
return count;
}