题目:
给定一个数组A[0,1,……,n-1],请构建一个数组B[0,1,……,n-1],其中B中的元素B[i]=A[0]×A[1]×……×A[i-1]×A[i+1]×……×A[n-1]。不能使用除法。
分析:
把B[i]=A[0]×A[1]×……×A[i-1]×A[i+1]×……×A[n-1]看成A[0]×A[1]×……×A[i-1]和A[i+1]×……×A[n-1]两部分的乘积,数组B可以用一个矩阵来创建,B[i]为矩阵中第i行所有元素的乘积。最直观的方法就是每一行,都去乘一遍,也就是O(n²)的时间复杂度。
令C[i]=A[0]×A[1]×……×A[i-1],令D[i]=A[i+1]×……×A[n-1]。C[i]可以从上向下计算,即C[i]=C[i-1]×A[i-1],D[i]从下往上计算,即D[i]=D[i+1]×A[i+1]。将中间值保存起来,下次直接用中间值做一步乘法就能得到当前步的结果。
解法:
package com.wsy;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
int[] A = new int[]{1, 2, 3, 4};
int length = A.length;
int[] B = new int[length];
int[] C = new int[length];
int[] D = new int[length];
C[0] = D[length - 1] = 1;
for (int i = 1; i < length; i++) {
C[i] = C[i - 1] * A[i - 1];
D[length - 1 - i] = D[length - i] * A[length - i];
}
for (int i = 0; i < length; i++) {
B[i] = C[i] * D[i];
}
System.out.println(Arrays.toString(B));
}
}