应用数学和机器学习基础

深度学习笔记

第一章 应用数学和机器学习基础

一、基本概念

1.标量(scalar):标量是一个数,例如, s = 1 s=1 s=1
2.向量(vector):向量是一列数,例如,向量 v = [ 1 , 2 , 3 , 4 , 5 ] T \mathbf{v}=[1,2,3,4,5]^{T} v=[1,2,3,4,5]T,向量一般默认按照列向量存储,是一维数组,表示 n n n 维空间的一个点。其中向量中的第 i i i 个元素为 v i \mathbf{v}_{i} vi.
矩阵(matrix):矩阵是二维数组,例如,
M = [ 1 , 2 3 , 4 ] \mathbf{M} = \left[\begin{matrix} 1,2\\ 3,4 \end{matrix} \right] M=[1,23,4]
矩阵大小为 m × n m\times n m×n,其中 m m m n n n分别表示矩阵的行数和列数,矩阵的第 i × j i\times j i×j个元素为 M i , j \mathbf{M}_{i,j} Mi,j
3.张量(tensor):张量表示多维数组,例如
T = [ [ 1 , 2 3 , 4 ] , [ 5 , 6 7 , 8 ] [ 9 , 10 11 , 12 ] [ 13 , 14 15 , 16 ] ] \mathbf{T} = \left[\begin{matrix} \left[\begin{matrix} 1,2\\ 3,4 \end{matrix} \right],\left[\begin{matrix} 5,6\\ 7,8 \end{matrix} \right]\\ \left[\begin{matrix} 9,10\\ 11,12 \end{matrix} \right] \left[\begin{matrix} 13,14\\ 15,16 \end{matrix} \right] \end{matrix} \right] T=[1,23,4],[5,67,8][9,1011,12][13,1415,16]
读取张量中的某个元素为 T i , j , k \mathbf{T}_{i,j,k} Ti,j,k
注: 一般地,标量使用小写字母表示,向量使用小写粗体字母表示,矩阵和张量使用大写粗体字母表示。 s , v , M , T s, \mathbf{v}, \mathbf{M}, \mathbf{T} s,v,M,T 可分别表示标量 a a a, 向量 v \mathbf{v} v, 矩阵 M \mathbf{M} M, 张量 T \mathbf{T} T.

2、基本运算

1、向量内积
向量内积表示两个向量 a = [ a 1 , … , a n ] T \mathbf{a}=[a_{1},\dots,a_{n}]^{T} a=[a1,,an]T b = [ b 1 , … , b n ] T \mathbf{b}=[b_{1},\dots,b_{n}]^{T} b=[b1,,bn]T 对应元素的乘积之和,表示为 a T b \mathbf{a}^{T}\mathbf{b} aTb, 即
a T b = ∑ i = 1 n a i b i \mathbf{a}^{T}\mathbf{b} = \sum_{i=1}^{n}a_{i}b_{i} aTb=i=1naibi
2、矩阵乘积
矩阵 A m × n \mathbf{A}_{m\times n} Am×n 和矩阵 B n × p \mathbf{B}_{n\times p} Bn×p 的乘积可表示为 C m × p = A m × n B n × p \mathbf{C}_{m\times p}=\mathbf{A}_{m\times n}\mathbf{B}_{n\times p} Cm×p=Am×nBn×p,其中矩阵 C m × p \mathbf{C}_{m\times p} Cm×p的第 ( i , j ) (i,j) (i,j) 个元素为
C i , j = ∑ k = 1 n A i , k B k , j C_{i,j} = \sum_{k=1}^{n}A_{i,k}B_{k,j} Ci,j=k=1nAi,kBk,j
3、矩阵点积(Hadamard乘积)
矩阵点积指两个矩阵 A m × n , B m × n \mathbf{A}_{m\times n}, \mathbf{B}_{m\times n} Am×n,Bm×n中对应元素的乘积,记为 C m × n = A m × n ⊙ B m × n \mathbf{C}_{m\times n} = \mathbf{A}_{m\times n}\odot\mathbf{B}_{m\times n} Cm×n=Am×nBm×n, 矩阵 C \mathbf{C} C的第 ( i , j ) (i,j) (i,j) 个元素为
C i , j = A i , j B i , j \mathbf{C}_{i,j} = \mathbf{A}_{i,j}\mathbf{B}_{i,j} Ci,j=Ai,jBi,j
**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值