SVM(Support Vector Machine)

本文深入探讨了SVM(Support Vector Machine)模型,包括函数间隔和集合间隔的概念,详细介绍了SVM的对偶问题,特别是如何利用拉格朗日乘数法转换为对偶形式,并探讨了软间隔允许一定程度的误分类。此外,还讨论了核方法在SVM中的应用,以及在回归任务中支持向量回归(SVR)的角色。
摘要由CSDN通过智能技术生成

SVM模型

函数间隔和集合间隔

假设分类超平面方程为:

wTxi+b=0 w T x i + b = 0

|wTxi+b| | w T x i + b | 可以表示分类的准确度, wTxi+b w T x i + b 的符号和 yi y i 可以表示分类的是否准确。所以
yi(wTxi+b) y i ( w T x i + b )

可以完全描述分类的正确性和准确度。上式即定义为函数间隔,几何间隔就是指平面样本点到分类平面的距离,即
几何间隔:
|wTxi+b|||w|| | w T x i + b | | | w | |

SVM算法旨在寻找一个泛化性能最好的超平面将线性可分样例集分类。当然SVM可用于线性不可分数据集和回归问题中,这两种情况之后我们再细说。先说说 如何建立优化目标
训练数据集为 { xi,yi}mi=1 { x i , y i } i = 1 m ,其中分类标记 yi{ 1,1} y i ∈ { − 1 , 1 } ,假设分类超平面为: wTx+b=0 w T x + b = 0 ,其中参数 w w b b 是超平面对应的法向量和截距,是待优化的参数。那么有
y i = 1 , w T x i + b 0
yi=1,wTxi+b0 y i = − 1 , w T x i + b ≤ 0

如果参数 (w,b) ( w , b ) 能够正确分类数据 { xi,yi}mi=1 { x i , y i } i = 1 m ,那么参数 (aw,ab) ( a w , a b ) 也能正确分类数据,此时对应的分类超平面不发生改变。所以,当数据集分类正确时,我们总是会有
(wTxi+b) yi1 ( w T x i + b )   y i ≥ 1

数据点 (xi,yi) ( x i , y i ) 到分类超平面的距离为
d=|wTxi+b|||w||=|(wTxi+b) yi|||w||1||w|| d = | w T x i + b | | | w | | = | ( w T x i + b )   y i | | | w | | ≥ 1 | | w | |

所以,两类数据的最小间隔为
γ=2||w|| γ = 2 | | w | |

为了得到泛化性能最好的分类器,我们需要在分类正确的情况下分类间隔最大化,所以我们有优化问题
maxw,b  2||w
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值