一个简单且处理速度很快的Python csv转excel方法

本文探讨了在Mac平台上高效转换大型CSV文件为Excel的方法。通过对比使用pandas和openpyxl库,发现直接逐行读取并写入的方式提高了处理速度。进一步采用pypy作为解释器显著提升了运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为业务需要,需要在Mac平台把csv转成excel,且excel在10万条到100万条之间。
如果在Windows下excel就能处理……但这是Mac。
最先用的方法是pandas里面的转excel,调用方法真简单,就是处理速度十分感人,我自己用的csv动不动十分钟起步,不知道其中经历了多少步的处理。

import pandas as pd
import datetime


def csv_to_xlsx_pd(sourcePath:str,savePath:str,encode='utf-8'):
    """输入文件路径、包含保存文件名的保存地址,然后调用pandas处理转为excel
    如果不需要可以把计时相关代码删除
    
    Args:
        sourcePath:str 来源文件路径
        savePath:str 保存文件路径,需要包含保存的文件名
        encode:str 编码格式,默认为utf-8
    """
    
    # print('开始处理%s' % sourcePath)
    # curr_time = datetime.datetime.now()

    csv = pd.read_csv(sourcePath, encoding=encode)
    csv.to_excel(savePath, sheet_name='sheet')

    # print('处理完毕')
    # curr_time2 = datetime.datetime.now()
    # print(curr_time2-curr_time)

为了提高处理效率,心想着直接用傻办法读取csv然后一条条写入excel里效率会高点么……结果真高一点……
用的是openpyxl包处理成xlsx格式,因为这个格式上限比xls大,最多支持1048576行。如果没有安装openpyxl,需要先pip装一下。

$ pip install pillow
from openpyxl import Workbook
import datetime


def csv_to_xlsx_pd(sourcePath:str,savePath:str,encode='utf-8',splitSymbol=','):
    """将csv或者tsv,转为excel(.xlsx格式)
    如果不需要可以把计时相关代码删除

    Args:
        sourcePath:str 来源文件路径
        savePath:str 保存文件路径,需要包含保存的文件名,文件名需要是xlsx格式的
        encode='utf-8' 默认编码,可以改为需要的编码如gbk
        splitSymbol=',' 默认分隔符,如果csv不是用小写逗号分隔的话,需要改成对应的分隔符
    """
    print('开始处理%s' % sourcePath)
    curr_time = datetime.datetime.now()
    print(curr_time)

    f = open(sourcePath, 'r', encoding=encode)
    # 创建一个workbook 设置编码
    workbook = Workbook()
    # 创建一个worksheet
    worksheet = workbook.active
    workbook.title = 'sheet'

    # 支持处理逗号分隔的csv或tab分隔的tsv格式
    if splitSymbol == ',':
        if sourcePath.find('.tsv') > -1:
            splitSymbol = '\t'

    fc = f.readlines()
    for i in range(len(fc)):
        fieldList = fc[i].split(splitSymbol)
        worksheet.append(fieldList)
    workbook.save(savePath)

    print('处理完毕')
    curr_time2 = datetime.datetime.now()
    print(curr_time2-curr_time)

source='/Users/xxx/Downloads/filename.tsv'
save='/Users/xxx/Desktop/filename.xlsx'
csv_to_xlsx_pd(sourcePath=source,savePath=save,encode='gbk')

可是搞完之后还是觉得运行速度太慢,动辄3、4分钟起,那咋整呢……于是决定从python解释器下手,进一步提高运行效率,就安装了pypy,速度快到飞起,就是有点耗CPU。安装完pypy替换默认的解释器后,之后记得要给pypy pip一下安装对应的包,否则运行会报错。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值