算法设计与分析(十四)

Maximum Product Subarray

题目

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

分析

这道题目非常熟悉,在解决这道题目之前,我们先来看看这样一道关于动态规划的题目
在这里插入图片描述
这里需要求相邻的子序列的最大值,我们用s[j]表示以j结束的最大子段和,则在某个数比到目前为止的最大子段和要大的时候就会发生状态的变化。
状态转移方程为:
s[j] = max(s[j-1] + a[j], a[j]);
最后求max(s)即可。

然后我们看会这道题,同样是要求连续的子段,但不同点是前面的是通过加法累积,而这题是通过乘法累积,这样会存在这样一个问题,那就是两个负数相乘得到的结果是正数,也就是说到某个下标前的数是负数的,到当前为止并不是最大的,但当下一个数是负数的时候,两者相乘得到的结果就变得很大了,所以我们的算法必须做出改变。
我们依然采取用一个数组存当前下标为止的最大子段和,为了适配负数的情况,我们多消耗空间来存当前下标为止的最小子段和,目的是当下一个数是负数的情况相乘以后会变成很大的数,
当前最大子段乘积的状态转移方程:

max_cur[i] = max(nums[i-1], max((max_cur[i-1]*nums[i-1]), min_cur[i-1]*nums[i-1]));

当前最小子段乘积的状态转移方程:

min_cur[i] = min(nums[i-1], min(max_cur[i-1]*nums[i-1], min_cur[i-1]*nums[i-1]));

最后求最大子段乘积中的最大值即可。

源码

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int size = nums.size();
        int max1 = 0;
        vector<int> max_cur(size + 1, 0);
        vector<int> min_cur(size + 1, 0);
        max_cur[0] = 1;
        if(size >= 1) {
        	max_cur[1] = nums[0];
        	min_cur[1] = nums[0];
        }
        if(size == 1) {
            return nums[0];
        }
        for(int i = 2; i <= size; i++) {
        	min_cur[i] = min(nums[i-1], min(max_cur[i-1]*nums[i-1], min_cur[i-1]*nums[i-1]));
        	max_cur[i] = max(nums[i-1], max((max_cur[i-1]*nums[i-1]), min_cur[i-1]*nums[i-1]));
        }
        for(int i = 1; i <= size; i++) {
        	if(max_cur[i] > max1) {
        		max1 = max_cur[i];
        	}
        }
        return max1;
    }
};

复杂度分析

时间复杂度:这里需要对数组遍历一次,所以这里的时间复杂度是O(n)
空间复杂度:这里我们用两个数组大小的数字来存最大子段乘积和最小子段乘积,所以空间复杂度是O(n)

更多技术博客https://vilin.club/

1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页