算法设计与分析(十四)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_36124194/article/details/84308959

Maximum Product Subarray

题目

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

分析

这道题目非常熟悉,在解决这道题目之前,我们先来看看这样一道关于动态规划的题目
在这里插入图片描述
这里需要求相邻的子序列的最大值,我们用s[j]表示以j结束的最大子段和,则在某个数比到目前为止的最大子段和要大的时候就会发生状态的变化。
状态转移方程为:
s[j] = max(s[j-1] + a[j], a[j]);
最后求max(s)即可。

然后我们看会这道题,同样是要求连续的子段,但不同点是前面的是通过加法累积,而这题是通过乘法累积,这样会存在这样一个问题,那就是两个负数相乘得到的结果是正数,也就是说到某个下标前的数是负数的,到当前为止并不是最大的,但当下一个数是负数的时候,两者相乘得到的结果就变得很大了,所以我们的算法必须做出改变。
我们依然采取用一个数组存当前下标为止的最大子段和,为了适配负数的情况,我们多消耗空间来存当前下标为止的最小子段和,目的是当下一个数是负数的情况相乘以后会变成很大的数,
当前最大子段乘积的状态转移方程:

max_cur[i] = max(nums[i-1], max((max_cur[i-1]*nums[i-1]), min_cur[i-1]*nums[i-1]));

当前最小子段乘积的状态转移方程:

min_cur[i] = min(nums[i-1], min(max_cur[i-1]*nums[i-1], min_cur[i-1]*nums[i-1]));

最后求最大子段乘积中的最大值即可。

源码

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int size = nums.size();
        int max1 = 0;
        vector<int> max_cur(size + 1, 0);
        vector<int> min_cur(size + 1, 0);
        max_cur[0] = 1;
        if(size >= 1) {
        	max_cur[1] = nums[0];
        	min_cur[1] = nums[0];
        }
        if(size == 1) {
            return nums[0];
        }
        for(int i = 2; i <= size; i++) {
        	min_cur[i] = min(nums[i-1], min(max_cur[i-1]*nums[i-1], min_cur[i-1]*nums[i-1]));
        	max_cur[i] = max(nums[i-1], max((max_cur[i-1]*nums[i-1]), min_cur[i-1]*nums[i-1]));
        }
        for(int i = 1; i <= size; i++) {
        	if(max_cur[i] > max1) {
        		max1 = max_cur[i];
        	}
        }
        return max1;
    }
};

复杂度分析

时间复杂度:这里需要对数组遍历一次,所以这里的时间复杂度是O(n)
空间复杂度:这里我们用两个数组大小的数字来存最大子段乘积和最小子段乘积,所以空间复杂度是O(n)

更多技术博客https://vilin.club/

展开阅读全文

没有更多推荐了,返回首页