删除排序数组中的重复项
-
题目描述:
给定一个排序数组,你需要在 原地 删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。
- 示例 1:
给定数组 nums = [1,1,2],
函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2
。
你不需要考虑数组中超出新长度后面的元素。
- 示例 2:
给定 nums = [0,0,1,1,1,2,2,3,3,4],
函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1
, 2
, 3
, 4
。
你不需要考虑数组中超出新长度后面的元素。
-
解题思路(1)
- 快慢指针法:
慢指针维护无重复数组,快指针用于遍历查找无重复项,将找到的无重复项赋值给slow指针维护
画图举例详细说明:
(1)初始 slow指向首元素 快指针fast和fast+1同步后移查找
(2)当找到无重复项 slow后移 然后将fast+1对应进行赋值给slow
代码只有几行,一看就懂,注意一点,slow开始指向第一个元素不变,找到下一个后slow必选先后移然后再赋值,否则会覆盖slow维护的首元素
int removeDuplicates(int* nums, int numsSize){
if(nums==NULL||numsSize==0)
return 0;
int slow=0;
for(int fast=0;fast<numsSize-1;fast++)
{
if(nums[fast]!=nums[fast+1])
{
slow++;//统计数组中无重复数字
nums[slow]=nums[fast+1];//无重复数字前移合并 slow指针维护
}
}
return slow+1;
}
-
解题思路(2)
-
遍历查询法
下面介绍的这种方法,一般初学者,比较容易想到这种解题思路,依然是延续了快慢指针的思路,但是快指针不是同步移动,然后设置start和end取找无重复项的边界,此方法虽然想法简单,但通过代码实现过程中非常容易出现bug,对此我就将我出现的情况进行描述:
(1)此方法end向后查找的过程中,找到不重复的项,通过end更新start的位置,并将start对应位置的值赋值给new指针维护无重复项数组
(2)看似很简单的问题,不就是向后查找吗,谁不会,但问题就出在这,首先是end结束的条件
我们先来考虑这样一段代码:
while(end<numsSize&&nums[start]==nums[end])
{
end++;
}
在这个while循环里,我们注意到使用了&&关系运算符,我们知道 条件1&&条件2,条件1为真还需要检查条件2,但条件1为假,直接结束整个表达式结果为假
对此,我们考虑一下,为什么要先将end<numsSize作为条件1?条件1 和条件2互换可以么?
好吧,这里就是第一个坑!!!
我们来讨论一下,如果条件2在前,为真,继续检查end<numsSize真假,此时如果end已经越界,在nums[start]==nums[end]过程中将出现数组访问越界
如果条件1在前,先判断end是否越界,为后续数组赋值操作提供安全的访问环境
(3)接下来介绍下一个坑,在这种思路下,不同于快慢指针法,快指针两个之间满足fast+1关系,由于start和end不存在关系,所以在遍历到最后两个元素需要分情况讨论:
最后两个元素 存在两种情况
- 相等情况下,由于start必定不会超越size 所以无论start倒数第一个元素还是倒数第二个元素 只需要将start对应位置元素赋值给new即可
while(start<numsSize)
{
nums[new++]=nums[start];
//相等情况下,start不会超越size 所以无论start倒数第一个元素还是倒数第二个元素 只需要将start对应位置元素赋值给new即可
while(end<numsSize&&nums[start]==nums[end])
{
end++;
}
start=end;
end++;
}
- 不相等情况 end此时可能会出现越界超过size,此时更新后start指向末尾元素,与上面情况不同 在上面操作中end越界,循坏结束,此时最后一个元素漏掉无法赋值给new 此时需要强行将末尾元素加入new
if(start==numsSize-1)
{
nums[new++]=nums[start];
}
整体代码如下:
int removeDuplicates(int* nums, int numsSize)
{
int start=0,end=1;
int new=0;
while(start<numsSize)
{
nums[new++]=nums[start];
//最后两个元素 存在两种情况:
//相等情况下,start不会超越size 所以无论start倒数第一个元素还是倒数第二个元素 只需要将start对应位置元素赋值给new即可
while(end<numsSize&&nums[start]==nums[end])
{
end++;
}
start=end;
end++;
}
//不相等情况 end此时越界超过size,此时更新后start指向末尾元素,与上面情况不同 在上面操作中end越界,循坏结束,此时最后一个元素漏掉无法赋值给new 需要强行将末尾元素加入new
if(start==numsSize-1)
{
nums[new++]=nums[start];
}
return new;
}
参考来源:leetcode算法