安装 jieba 包
pip install jieba
https://github.com/fxsjy/jieba
特点:
支持三种分词模式:
精确模式,试图将句子最精确地切开,适合文本分析;
全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
支持繁体分词
支持自定义词典
MIT 授权协议
算法:
基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
分词
1 jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用
HMM 模型
2 jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK字符串,可能无法预料地错误解码成 UTF-8
3 jieba.cut以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for循环来获得分词后得到的每一个词语(unicode),或者用jieba.lcut 以及jieba.lcut_for_search 直接返回list
4 jieba.Tokenizer(dictionary=DEFAULT_DICT)
新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
5 使用jieba.posseg分词,可以查看分词的词性
分词的3种模式
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print("Full Mode: " + "/".join(seg_list)) #全模式
Full Mode: 我/来到/北京/清华/清华大学/华大/大学
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print("Default Mode: " + "/".join(seg_list)) #精确模式
Default Mode: 我/来到/北京/清华大学
seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print(",".join(seg_list))
他,来到,了,网易,杭研,大厦
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京东大学深造") #搜索引擎模式
print(",".join(seg_list))
小明,硕士,毕业,于,中国,科学,学院,科学院,中国科学院,计算,计算所,,,后,在,日本,京东,大学,深造
查看词性
import jieba.posseg as pseg #查看词性
words = pseg.cut("我爱北京天安门")
for word, flag in words:
print("%s,%s"%(word,flag)