自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 资源 (3)
  • 收藏
  • 关注

原创 numpy矩阵拼接 np.column_stack np.row_stack np.hstack np.vstack

此处给一个最大侧忠告:在numpy中进行拼接时候不要用一位数组,因为在不同的命令中一维数组有的时候是列,不好把控。因此创造数组时候至少是个二维数组,这样可以看出, np.row_stack效果同np.vstack,都是增加行数。 np.column_stack和np.hstack相同,都是增加列数。a=np.ones([1,4987])a2=np.row_stack((a,a))pr...

2018-12-18 14:39:39 2197

原创 matplotlib自动确定tick的范围

 matplotlib画图中tick的最大值往往很有可能小于数据中最大值,比如下图这种坐标范围很难满足科研论文的需要,因此自编程序自动生成坐标系范围,上图处理后的效果如下:这样横纵坐标就完全包在里面了,而且也是自己指定的坐标间隔实际上相比于源程序只是增加了两条命令: ax.set_yticks(ytickrangecalculation(ymax,ymin,3)) ...

2018-11-30 21:59:39 613

原创 python插值变换地震波间隔:

采用插值法变换地震波间隔,把原本不等间距的地震动记录插值方法变换成等间距的地震动记录:def interpolation(acc,time,timestep):#插值方法是两点之间插值。acc是原时程,time是原非等间距时间,timestep是处理过后的时间间距 t=0 timeidx=0 acc2idx=0 acc2=np.zeros([int(time...

2018-11-30 11:50:32 1084

原创 python程序精确法求解反应谱,傅里叶谱,功率谱

主要用于地震动处理种的代码:傅里叶谱 def myfft(inp,delta): #输入的x为竖向的array from scipy.fftpack import fft,ifft inp=np.array(inp).reshape(-1,1) inpf=np.fft.fft(inp,axis=0) #默认的是对行向量fourier变...

2018-10-04 19:52:32 4127 7

原创 地震响应分析中土体动力本构模型

土体的动力本构本身诚然是一个恨头痛的问题,因为它实在是一个不可回避的问题,目前学者们开发出的本构模型实在是很多,但是真的去分类了解实在是标准不一,也造成了针对不同的问题很难选择出相比合适的本构模型来应用。此处根据一个公认度比较高的分类模式对土体本构模型类型分类架构进行一个整理,对地震作用下不同问题去选择土体本构时候做一个宏观的把握。

2018-01-20 14:05:56 5949 6

吴恩达 deeplearning笔记

课程概述 课程地址:https://www.coursera.org/course/ml Machine Learning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知。很多研究者也认为这是最好的人工智能的取得方式。在本课中,您将学习最有效的机器学习技术,并获得实践,让它们为自己的工作。更重要的是,你会不仅得到理论基础的学习,而且获得那些需要快速和强大的应用技术解决问题的实用技术。最后,你会学到一些硅谷利用机器学习和人工智能的最佳实践创新。 本课程提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括: (一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。 (二)无监督学习(聚类,降维,推荐系统,深入学习推荐)。 (三)在机器学习的最佳实践(偏差/方差理论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何运用学习算法构建智能机器人(感知,控制),文本的理解(Web搜索,反垃圾邮件),计算机视觉,医疗信息,音频,数据挖掘,和其他领域。 本课程需要10周共18节课,相对以前的机器学习视频,这个视频更加清晰,而且每课都有ppt课件,推荐学习。 我和我的团队翻译了部分视频,目前已经翻译完毕,内嵌中英文字幕,推荐使用potplayer。此外,我无偿把字幕贡献给了网易云课堂,他们开了免费课:吴恩达机器学习。 这篇中文笔记,主要是根据视频内容和中文字幕以及ppt来制作,部分来源于网络,如“小小人_V”的笔记,并持续更新。 本人水平有限,如有公式、算法错误,请及时指出,发邮件给我,也可以加我qq。 今日发现这个笔记被下载超过10万次,应该说这个笔记有点用,我发现以前一些翻译小错误,进行了修改,以免误导初学者。 黄海广 2018-3-7 夜 黄海广 [email protected] qq群:727137612 知识星球(黄博的机器学习圈子,ID:92416895)

2019-04-07

Divide and Conquer, Sorting and Searching, and Randomized Algorithms python 版答案

斯坦福algorithm part1 Divide and Conquer, Sorting and Searching, and Randomized Algorithms python 版答案

2019-04-07

abaqus混凝土弹塑性损伤本构数据

abaqus混凝土弹塑性损伤本构数据,适用于静力分析,计算速度很快,结果靠谱,亲测有效。

2018-01-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除