2021-03-05

标准正态随机噪声与高斯白噪声

1.标准正态随机噪声一定是高斯白噪声

证明:R(t_1,t_2)=E[x(t_1)x(t_2)]=\iint_{-\infty}^{\infty}\frac{1}{2\pi}e^{-\frac{x_1^2+x_2^2}{2}}\cdot x_1\cdot x_2dx_1dx_2

再将x_2替换为y并进行极坐标变换就能证明t_1\neq t_2时相关函数为0:

R(t_1,t_2)=\int_0^{2\pi}\int_0^{\infty}\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}\cdot x\cdot ydxdy\\=\int_0^{2\pi}\int_0^{\infty}\frac{1}{2\pi}e^{-\frac{r^2}{2}}\cdot rcos\theta \cdot r sin\theta drd\theta\\=\int_0^{2\pi}0.5*sin2\theta d\theta\int_0^{\infty}\frac{1}{2\pi}e^{-\frac{r^2}{2}}\cdot r^2 dr\\=0

同时,t_1=t_2时,Dx=1,Ex=0\rightarrow Ex^2=1,即

R = \begin{cases} 0 & \text{if } t_1\neq t_2 \\ 1 & \text{if } t_1=t_2 \end{cases}

【标准的\delta函数在时间差为0是强度为∞,这里并不是一个标准的冲激函数,有无数学大佬解释答疑?】

因此其功率谱是整个频率上均匀分布的,因此标准正态随机噪声一定是高斯白噪声

【借鉴冲激函数的Fourier变换:】

$$ \mathscr{F}[R(\tau)]=\int_{-\infty}^{+\infty} R(\tau) \mathbf{e}^{-j \omega \tau} \mathbf{d} \tau=\left.\mathbf{e}^{-j \omega t}\right|_{t=\mathbf{0}}=\mathbf{1} $$

上面的计算没有规定R(\tau)在一点处的积分结果,问题与上面的相同

2.白噪声不一定是高斯的

白噪声可以推导出相关函数是冲激,但是从这一点无法推断其分布是高斯分布,比如高斯分布乘以一个确定函数f(x),很容易就不再是高斯分布

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值