Improving Peer Assessment with Graph Neural Networks

ABSTRACT

同行评估系统(Peer assessment systems)在许多环境中出现,例如大型(在线)班级的同行评分、会议中的同行评审、同行艺术评估等。然而,同行评估可能不如专家评估准确,从而使这些系统不可靠。同行评估系统的可靠性受到各种因素的影响,如同行的评估能力、他们的战略评估行为和同行评估设置(例如,同行评估小组工作或他人的个人工作)。利用我们的同行评估网络模型,我们引入了一个图神经网络,它可以学习评估模式和用户行为,以更准确地预测专家评估。我们对真实和合成数据集的广泛实验证明了我们方法的有效性,它优于各种同行评估方法。

1. INTRODUCTION

同行评估系统已成为一种具有成本效益且可扩展的评估机制,适用于许多环境,例如大型(在线)班级的同行评分和会议中的同行审查。在这些系统中,同行评估彼此的工作(例如作业、论文等),而不是一组预先任命的负责评估的专家(例如教员、助教、项目委员会成员等)。这些同行评估系统不仅使对数千份贡献的评估变得合理,而且有助于加深同行的理解[22],并促进同行相互提供反馈[20]。然而,同行评估系统的可靠性直接受到同行评估准确性的影响。同行可能缺乏准确评估他人的知识或动机,或者他们可能为了自己的利益而在评估中具有战略性[1,12,11,2,15,34,25,21]。

Related work.

采用两类方法解决可靠性挑战。一个主要专注于设计防策略的同行评估机制,激励同行准确地相互评估[6,24,9,16,11,35,32]。另一类方法——与我们的工作最相关——强调学习同行聚合机制,它聚合一个项目(例如,作业或论文)的嘈杂同行评估,作为对其基础价值(或专家评估)的估计[19,27,7,30,4]。

Contribution.

2. PROPOSED APPROACH

2.1 Social-Ownership-Assessment Model

假设集合 U \mathcal{U} U n n n个users可以测评集合 I \mathcal{I} I中的 m m m个items. 每个item i ∈ I i \in \mathcal{I} iI对应一个真实值 v i ∈ R v_i \in \mathbb{R} viR.

user-item评估可以用评估矩阵(assessment
matrix) A = [ A u i ] \mathbf{A}=[A_{ui}] A=[Aui] A u i A_{ui} Aui是user u ∈ U u \in \mathcal{U} uU对 item i ∈ I i \in \mathcal{I} iI的评估分值。当 u u u i i i的评估缺失时,令 A u i = 0 A_{ui}=0 Aui=0,其他情况下 A u i ∈ R + A_{ui} \in \mathbb{R^+} AuiR+。由于评估矩阵 A \mathbf{A} A是稀疏的,我们用一个无向有权二部图来表示它。节点有两种类型,分别是user 和 item。两类节点之间的边为评估分值。

Social-Ownership-Assessment Network (SOAN)是一种无向加权多图,由用户和项目两种节点类型上的社交、所有权和评估关系三种边组成。除了评估矩阵 A \mathbf{A} A,该网络还有另外两个邻接矩阵:社交矩阵(social matrix) S = [ S u v ] ∈ R n × n \mathbf{S}=[S_{uv}] \in \mathbb{R}^{n \times n} S=[Suv]Rn×n和所有权矩阵(ownership matrix) O = [ O u i ] ∈ R n × m \mathbf{O}=[O_{ui}] \in \mathbb{R}^{n \times m} O=[Oui]Rn×m。我们令 G = ( S , O , A ) G=(\mathbf{S},\mathbf{O},\mathbf{A}) G=(S,O,A)表示SOAN的三元网络组。

Expressiveness.

Less Assumptions.

2.2 Graph Convolutional Networks

给定一个SOAN G = ( S , O , A ) G={(\mathbf{S},\mathbf{O},\mathbf{A})} G=(S,O,A)和一组item子集 D ∈ I \mathcal{D} \in \mathcal{I} DI及其真实评估值 V D = { v j ∣ j ∈ D } V_\mathcal{D}=\{ v_j | j \in \mathcal{D} \} VD={vjjD},我们的目标的预测 v i v_i vi,且 i ∉ D i \notin \mathcal{D} i/D
预测函数为:
f ( i ∣ θ , G ) = σ ( w ( o ) z i + b ( o ) ) ( 1 ) f( i | \theta ,G ) = \sigma(\mathbf{w}^{(o)} \mathbf{z}_{i}+b^{(o)}) (1) f(iθ,G)=σ(w(o)zi+b(o))(1)
其中 σ ( ⋅ ) \sigma(\cdot) σ()是sigmoid函数, w o \mathbf{w}_o wo b o \mathbf{b}_o bo是输出层的可学参数。

节点 z i \mathbf{z}_i zi的嵌入是用 k k k层图卷积网络计算得到。设 H ( l ) \mathbf{H}^{(l)} H(l)是所有用户 U \mathcal{U} U和项目 I \mathcal{I} I的第 l l l d d d维节点嵌入矩阵,用户 u u u和项目 i i i的向量嵌入分别位于第 u u u行和第 ( m + i ) (m+i) (m+i)行。在(1)中,项 i i i的嵌入 z i \mathbf{z}_i zi H ( K ) \mathbf{H}^{(K)} H(K)的第 m m m行,更新规则为
H ( l + 1 ) = g ( l ) ( D ( − 1 ) M H ( l ) W ( l ) ) ( 2 ) \mathbf{H}^{(l+1)}=g^{(l)}(\mathbf{D}^{(-1)} \mathbf{M} \mathbf{H}^{(l)} \mathbf{W}^{(l)}) (2) H(l+1)=g(l)(D(1)MH(l)W(l))(2)
矩阵 M \mathbf{M} M由图 G = ( S , O , A ) G={(\mathbf{S},\mathbf{O},\mathbf{A})} G=(S,O,A) M = ( S P P T 0 m ) + I \mathbf{M}=\begin{pmatrix} \mathbf{S} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0}_m \end{pmatrix}+\mathbf{I} M=(SPTP0m)+I构造而成,其中 P = O + A \mathbf{P=O+A} P=O+A 0 m \mathbf{0}_m 0m m × m m \times m m×m零矩阵, I \mathbf{I} I是单位矩阵。

Richer data as node-level features.

Learning.

3. EXPERIMENTS

Synthetic datasets.

Baselines.

Experimental setup.

Results: Real-World Datasets.

Results: Synthetic Data with Bias-Reliability.

Results: Synthetic Data with Strategic Assessment.

Discussion.

4. CONCLUSION AND FUTURE WORK

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值