ABSTRACT
同行评估系统(Peer assessment systems)在许多环境中出现,例如大型(在线)班级的同行评分、会议中的同行评审、同行艺术评估等。然而,同行评估可能不如专家评估准确,从而使这些系统不可靠。同行评估系统的可靠性受到各种因素的影响,如同行的评估能力、他们的战略评估行为和同行评估设置(例如,同行评估小组工作或他人的个人工作)。利用我们的同行评估网络模型,我们引入了一个图神经网络,它可以学习评估模式和用户行为,以更准确地预测专家评估。我们对真实和合成数据集的广泛实验证明了我们方法的有效性,它优于各种同行评估方法。
1. INTRODUCTION
同行评估系统已成为一种具有成本效益且可扩展的评估机制,适用于许多环境,例如大型(在线)班级的同行评分和会议中的同行审查。在这些系统中,同行评估彼此的工作(例如作业、论文等),而不是一组预先任命的负责评估的专家(例如教员、助教、项目委员会成员等)。这些同行评估系统不仅使对数千份贡献的评估变得合理,而且有助于加深同行的理解[22],并促进同行相互提供反馈[20]。然而,同行评估系统的可靠性直接受到同行评估准确性的影响。同行可能缺乏准确评估他人的知识或动机,或者他们可能为了自己的利益而在评估中具有战略性[1,12,11,2,15,34,25,21]。
Related work.
采用两类方法解决可靠性挑战。一个主要专注于设计防策略的同行评估机制,激励同行准确地相互评估[6,24,9,16,11,35,32]。另一类方法——与我们的工作最相关——强调学习同行聚合机制,它聚合一个项目(例如,作业或论文)的嘈杂同行评估,作为对其基础价值(或专家评估)的估计[19,27,7,30,4]。
Contribution.
2. PROPOSED APPROACH
2.1 Social-Ownership-Assessment Model
假设集合 U \mathcal{U} U中 n n n个users可以测评集合 I \mathcal{I} I中的 m m m个items. 每个item i ∈ I i \in \mathcal{I} i∈I对应一个真实值 v i ∈ R v_i \in \mathbb{R} vi∈R.
user-item评估可以用评估矩阵(assessment
matrix)
A
=
[
A
u
i
]
\mathbf{A}=[A_{ui}]
A=[Aui] ,
A
u
i
A_{ui}
Aui是user
u
∈
U
u \in \mathcal{U}
u∈U对 item
i
∈
I
i \in \mathcal{I}
i∈I的评估分值。当
u
u
u对
i
i
i的评估缺失时,令
A
u
i
=
0
A_{ui}=0
Aui=0,其他情况下
A
u
i
∈
R
+
A_{ui} \in \mathbb{R^+}
Aui∈R+。由于评估矩阵
A
\mathbf{A}
A是稀疏的,我们用一个无向有权二部图来表示它。节点有两种类型,分别是user 和 item。两类节点之间的边为评估分值。
Social-Ownership-Assessment Network (SOAN)是一种无向加权多图,由用户和项目两种节点类型上的社交、所有权和评估关系三种边组成。除了评估矩阵 A \mathbf{A} A,该网络还有另外两个邻接矩阵:社交矩阵(social matrix) S = [ S u v ] ∈ R n × n \mathbf{S}=[S_{uv}] \in \mathbb{R}^{n \times n} S=[Suv]∈Rn×n和所有权矩阵(ownership matrix) O = [ O u i ] ∈ R n × m \mathbf{O}=[O_{ui}] \in \mathbb{R}^{n \times m} O=[Oui]∈Rn×m。我们令 G = ( S , O , A ) G=(\mathbf{S},\mathbf{O},\mathbf{A}) G=(S,O,A)表示SOAN的三元网络组。
Expressiveness.
Less Assumptions.
2.2 Graph Convolutional Networks
给定一个SOAN
G
=
(
S
,
O
,
A
)
G={(\mathbf{S},\mathbf{O},\mathbf{A})}
G=(S,O,A)和一组item子集
D
∈
I
\mathcal{D} \in \mathcal{I}
D∈I及其真实评估值
V
D
=
{
v
j
∣
j
∈
D
}
V_\mathcal{D}=\{ v_j | j \in \mathcal{D} \}
VD={vj∣j∈D},我们的目标的预测
v
i
v_i
vi,且
i
∉
D
i \notin \mathcal{D}
i∈/D。
预测函数为:
f
(
i
∣
θ
,
G
)
=
σ
(
w
(
o
)
z
i
+
b
(
o
)
)
(
1
)
f( i | \theta ,G ) = \sigma(\mathbf{w}^{(o)} \mathbf{z}_{i}+b^{(o)}) (1)
f(i∣θ,G)=σ(w(o)zi+b(o))(1)
其中
σ
(
⋅
)
\sigma(\cdot)
σ(⋅)是sigmoid函数,
w
o
\mathbf{w}_o
wo和
b
o
\mathbf{b}_o
bo是输出层的可学参数。
节点
z
i
\mathbf{z}_i
zi的嵌入是用
k
k
k层图卷积网络计算得到。设
H
(
l
)
\mathbf{H}^{(l)}
H(l)是所有用户
U
\mathcal{U}
U和项目
I
\mathcal{I}
I的第
l
l
l层
d
d
d维节点嵌入矩阵,用户
u
u
u和项目
i
i
i的向量嵌入分别位于第
u
u
u行和第
(
m
+
i
)
(m+i)
(m+i)行。在(1)中,项
i
i
i的嵌入
z
i
\mathbf{z}_i
zi是
H
(
K
)
\mathbf{H}^{(K)}
H(K)的第
m
m
m行,更新规则为
H
(
l
+
1
)
=
g
(
l
)
(
D
(
−
1
)
M
H
(
l
)
W
(
l
)
)
(
2
)
\mathbf{H}^{(l+1)}=g^{(l)}(\mathbf{D}^{(-1)} \mathbf{M} \mathbf{H}^{(l)} \mathbf{W}^{(l)}) (2)
H(l+1)=g(l)(D(−1)MH(l)W(l))(2)
矩阵
M
\mathbf{M}
M由图
G
=
(
S
,
O
,
A
)
G={(\mathbf{S},\mathbf{O},\mathbf{A})}
G=(S,O,A)由
M
=
(
S
P
P
T
0
m
)
+
I
\mathbf{M}=\begin{pmatrix} \mathbf{S} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0}_m \end{pmatrix}+\mathbf{I}
M=(SPTP0m)+I构造而成,其中
P
=
O
+
A
\mathbf{P=O+A}
P=O+A,
0
m
\mathbf{0}_m
0m是
m
×
m
m \times m
m×m零矩阵,
I
\mathbf{I}
I是单位矩阵。