Spectral Collaborative Filtering
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
尽管协同过滤(CF)很流行,但是基于CF的方法仍然存在冷启动问题,这对推荐系统(RS)的用户体验有很大的负面影响。在本文中,为了克服上述缩回问题,我们首先将用户和项之间的关系表示为二部图。然后,我们提出了一种新的频谱卷积运算,直接在频谱域中进行,在此运算中,不仅可以显示图的邻近性信息,还可以显示隐藏在图中的连通性信息。利用提出的谱卷积运算,我们建立了一个名为谱协同过滤(SpectralCF)的深度推荐模型。从已存在的谱域中获取丰富的链接信息,SpectralCF能够发现用户和物品交互之间的深层连接信息,可以解决冷启动的问题。
一、谱图理论
谱图理论[27]研究之间的连接组合的属性图和矩阵的特征值相关的图表,如拉普拉斯算子矩阵(见2.4节中定义2)。一般来说,的光谱图着重于图的连通性,而不是几何距离。为了了解光谱域是如何帮助推荐的,以及如何更好地理解在光谱透视图中查看用户-项二分图的优点,让我们重新看看图1所示的样例。对于二部图B,我们用特定的频率域直观地绘制它的顶点。虽然顶点不带有坐标,但在空间中绘制它们的一种流行方法是使用与图相关联的拉普拉斯矩阵的特征向量来提供坐标[28]。图2显示,与i2和i3相比,i4在空间2中更接近于u1。因此,当变换到频域时,对于u1, i4比i2或i3更合适。根本原因是图的连通性信息已经在频域中被揭示了,在频域中顶点之间的关系不仅依赖于它们的接近性,还依赖于它们的连通性。因此,利用图的频谱可以帮助更好地探索和确定要推荐的项目
受节点/图分类方法最新进展[6,17]的启发,我们提出了一种基于谱图理论的方法,利用谱域中广泛的信息来克服上述缺点和挑战。具体地说,为了克服直接从频谱域学习推荐的困难(见3.3节),我们首先提出了一种新的频谱卷积操作(见Eq.(10)),该操作由一个多项式进行逼近,以动态放大或衰减每个频域。然后,我们引入了一个名为谱协同过滤(SpectralCF)的深度推荐模型,该模型由多个提出的光谱卷积层构建。SpectralCF直接在光谱域进行协同过滤。
定义1
二、定义
1.二部图
一个用户-项二部图建议的N个顶点和E条边定义为B ={U,I,E},其中U和I是用户和项的两个不相交的顶点集。每条边e∈e都有e = (u,i)的形式,其中u∈u,i∈i,并且表示用户u与训练集中的项i进行了交互。
2.隐式矩阵
隐式反馈矩阵R为|U|×|I|矩阵,定义如下:
,3.邻接矩阵
对于二部图B,其对应的邻矩阵A可定义为:
4,拉普拉斯矩阵
定义随机游动拉普拉斯矩阵L为
,其中I为N×N单位矩阵,D为N×N对角次矩阵,定义为
5,图傅里叶变换
X表示图G上的图信号,X(j)表示X的第j个值,μLj表示L的第l个特征向量,X^(l)表示被转换到频谱域的图信号
对于二部图,我们假设有两种图信号xu和xi,其中
6,频谱协同过滤
7,多层模型
8,损失函数
在此函数中,采用了[23]中建议的常规的BPR损失函数。BPR用来处理隐含数据的pari-wise损失。与point-wise的方法[18]不同,BPR学习一个三元组(r,j,j‘),其中项目j被用户r喜欢/点击/观看,而项目j’不是。通过最大化j和j‘之间的偏好差异,BPR假设用户i更喜欢物品j而不是未被观察到的物品j’。