CNN
不甘现状的咸鱼却没办法
缺少的是耐心 多出的是浮躁 刨根问底
展开
-
ACNet代码解读
Paper:https://arxiv.org/abs/1908.03930v1%E3%80%82Code:https://github.com/ShawnDing1994/ACN前言:本人第一次解读代码,才疏学浅,如有纰漏,望不吝赐教!# 代码块 1# 作者源码非常详实,在此采用ResNet56为backbone解读python acnet/acnet_rc56.py --tr...原创 2020-04-10 12:14:17 · 2894 阅读 · 2 评论 -
Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net阅读笔记
Paper:https://arxiv.org/abs/1807.09441Code:https://github.com/XingangPan/IBN-Net文章摘要:卷积神经网络(CNNs)在许多计算机视觉问题上取得了巨大的成功。与现有为提高某一场景的性能设计的CNN不同,论文的IBN-Net显著增强了CNN的建模能力,并且具有较强的泛化能力,可以不经过netuning即可在另一场景取...原创 2020-03-11 12:04:56 · 919 阅读 · 0 评论 -
EfficientNet与EfficientDet论文解读
这两项工作均来自GoogleBrain的大佬,EfficientDet可以看做EfficientNet的工作拓展。目前EfficientNet的代码已经开源,EfficientDet已经被复现。这两项工作的纸面效果看起来特别优秀,与其他工作相比,在差不多的精度下,参数量和计算量均大幅度低于其他做。而且都是家族系方法,各位可以根据自己的需求选择。先介绍第一篇:EfficientNet: Ret...原创 2020-03-09 19:15:18 · 1823 阅读 · 0 评论 -
CNN--DenseNet--Memory-Efficient DenseNet
Paper:https://arxiv.org/abs/1608.06993(DenseNet)https://arxiv.org/pdf/1707.06990.pdf(Memory-Efficient DenseNet)Code:https://github.com/liuzhuang13/DenseNethttps://github.com/gpleiss/efficien...原创 2020-03-03 18:26:25 · 618 阅读 · 0 评论 -
CNN--ResNeXt--Aggregated Residual Transformations for Deep Neural Networks
Paper:https://arxiv.org/pdf/1611.05431.pdfCode:https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/resnext.py简述:此网络属于ResNet系列。在保持计算和空间复杂度的前提下,通过构建可复用的一个block...原创 2020-03-01 21:07:48 · 195 阅读 · 0 评论 -
DropBlock: A regularization method for convolutional networks论文解读
Paper:https://arxiv.org/pdf/1810.12890.pdfCode:https://github.com/miguelvr/dropblock&https://github.com/DHZS/tf-dropblock摘要:当前深度神经网络被过度参数化或者训练集多样性充足或合适的正则化(权重衰减、丢弃法)训练时,通常会取得很好地效果。尽管dropout被...原创 2020-02-20 11:37:25 · 427 阅读 · 0 评论 -
卷积神经网络的发展历程(不定期更新)
CNN主要的经典结构包括:LeNet、AlexNet、ZFNet、VGG、NIN、GoogleNet、ResNet、SENet等,其发展过程如下图所示。(下图来自刘昕博士《CNN的近期进展与实用技巧》)1、LeNet-5LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务。自那时起,CNN的最基本的架构就定下来了:卷积层、池化层、全连接层。如今...原创 2019-07-16 17:38:17 · 3184 阅读 · 0 评论