HashMap简介:
在介绍hashmap之前,介绍几种常见的数据结构:
数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)。
线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)。
二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。
哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。
我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。
比如我们要新增或查找某个元素,我们通过把当前元素的关键字 通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。
存储位置 = f(关键字)
其中,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣。举个例子,比如我们要在哈希表中执行插入操作:
查找操作同理,先通过哈希函数计算出实际存储地址,然后从数组中对应地址取出即可。
哈希冲突:如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单和散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。hashmap采用的就是链地址法,jdk1.7中,当冲突时,在冲突的地址上生成一个链表,将冲突的元素的key,通过equals进行比较,相同即覆盖,不同则添加到链表上,此时如果链表过长,效率就会大大降低,查找和添加操作的时间复杂度都为O(n);但是在jdk1.8中如果链表长度大于8,链表就会转化为红黑树,时间复杂度也降为了O(logn),性能得到了很大的优化。
HashMap实现原理:
在jdk1.7以前,HashMap由数组+链表组成的,jdk1.8以后,HashMap由数组+链表+红黑树。
hashMap中几个重要的字段:
//默认初始容量为16,0000 0001 右移4位 0001 0000为16,主干数组的初始容量为16,而且这个数组
//必须是2的倍数(后面说为什么是2的倍数)
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大容量为int的最大值除2
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//阈值,如果主干数组上的链表的长度大于8,链表转化为红黑树
static final int TREEIFY_THRESHOLD = 8;
//hash表扩容后,如果发现某一个红黑树的长度小于6,则会重新退化为链表
static final int UNTREEIFY_THRESHOLD = 6;
//当hashmap容量大于64时,链表才能转成红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
//临界值=主干数组容量*负载因子
int threshold;
hashmap的构造函数:
//initialCapacity为初始容量,loadFactor为负载因子
public HashMap(int initialCapacity, float loadFactor) {
//初始容量小于0,抛出非法数据异常
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//初始容量最大为MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//负载因子必须大于0,并且是合法数字
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
//将初始容量转成2次幂
this.threshold = tableSizeFor(initialCapacity);
}
//tableSizeFor的作用就是,如果传入A,当A大于0,小于定义的最大容量时,
// 如果A是2次幂则返回A,否则将A转化为一个比A大且差距最小的2次幂。
//例如传入7返回8,传入8返回8,传入9返回16
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//调用上面的构造方法,自定义初始容量,负载因子为默认的0.75
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//默认构造方法,负载因子为0.75,初始容量为DEFAULT_INITIAL_CAPACITY=16,初始容量在第一次put时才会初始化
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//传入一个MAP集合的构造方法
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
hashmap一次put的过程:
1、首先执行put方法:
2、然后将key传入hash方法,计算其对应的hash值:
此处如果传入的int类型的值:①向一个Object类型赋值一个int的值时,会将int值自动封箱为Integer。②integer类型的hashcode都是他自身的值,即h=key;h >>> 16为无符号右移16位,低位挤走,高位补0;^ 为按位异或,即转成二进制后,相异为1,相同为0,由此可发现,当传入的值小于 2的16次方-1 时,调用这个方法返回的值,都是自身的值。
3、然后再执行putVal方法:
//onlyIfAbsent是true的话,不要改变现有的值
//evict为true的话,表处于创建模式
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果主干上的table为空,长度为0,调用resize方法,调整table的长度(resize方法在下图中)
if ((tab = table) == null || (n = tab.length) == 0)
/* 这里调用resize,其实就是第一次put时,对数组进行初始化。
如果是默认构造方法会执行resize中的这几句话:
newCap = DEFAULT_INITIAL_CAPACITY; 新的容量等于默认值16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
threshold = newThr; 临界值等于16*0.75
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; 将新的node数组赋值给table,然后return newTab
如果是自定义的构造方法则会执行resize中的:
int oldThr = threshold;
newCap = oldThr; 新的容量等于threshold,这里的threshold都是2的倍数,原因在
于传入的数都经过tableSizeFor方法,返回了一个新值,上面解释过
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
threshold = newThr; 新的临界值等于 (int)(新的容量*负载因子)
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; return newTab;
*/
n = (tab = resize()).length; //将调用resize后构造的数组的长度赋值给n
if ((p = tab[i = (n - 1) & hash]) == null) //将数组长度与计算得到的hash值比较
tab[i] = newNode(hash, key, value, null);//位置为空,将i位置上赋值一个node对象
else { //位置不为空
Node<K,V> e; K k;
if (p.hash == hash && // 如果这个位置的old节点与new节点的key完全相同
((k = p.key) == key || (key != null && key.equals(k))))
e = p; // 则e=p
else if (p instanceof TreeNode) // 如果p已经是树节点的一个实例,既这里已经是树了
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else { //p与新节点既不完全相同,p也不是treenode的实例
for (int binCount = 0; ; ++binCount) { //一个死循环
if ((e = p.next) == null) { //e=p.next,如果p的next指向为null
p.next = newNode(hash, key, value, null); //指向一个新的节点
if (binCount >= TREEIFY_THRESHOLD - 1) // 如果链表长度大于等于8
treeifyBin(tab, hash); //将链表转为红黑树
break;
}
if (e.hash == hash && //如果遍历过程中链表中的元素与新添加的元素完全相同,则跳出循环
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; //将p中的next赋值给p,即将链表中的下一个node赋值给p,
//继续循环遍历链表中的元素
}
}
if (e != null) { //这个判断中代码作用为:如果添加的元素产生了hash冲突,那么调用
//put方法时,会将他在链表中他的上一个元素的值返回
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null) //判断条件成立的话,将oldvalue替换
//为newvalue,返回oldvalue;不成立则不替换,然后返回oldvalue
e.value = value;
afterNodeAccess(e); //这个方法在后面说
return oldValue;
}
}
++modCount; //记录修改次数
if (++size > threshold) //如果元素数量大于临界值,则进行扩容
resize(); //下面说
afterNodeInsertion(evict);
return null;
}
hashmap扩容机制:在JDK8里面,HashMap的底层数据结构已经变为数组+链表+红黑树的结构了,因为在hash冲突严重的情况下,链表的查询效率是O(n),所以JDK8做了优化对于单个链表的个数大于8的链表,会直接转为红黑树结构算是以空间换时间,这样以来查询的效率就变为O(logN)。
//上图中说了默认构造方法与自定义构造方法第一次执行resize的过程,这里再说一下扩容的过程
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) { //扩容肯定执行这个分支
if (oldCap >= MAXIMUM_CAPACITY) { //当容量超过最大值时,临界值设置为int最大值
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) //扩容容量为2倍,临界值为2倍
newThr = oldThr << 1;
}
else if (oldThr > 0) // 不执行
newCap = oldThr;
else { // 不执行
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) { // 不执行
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; //将新的临界值赋值赋值给threshold
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; //新的数组赋值给table
//扩容后,重新计算元素新的位置
if (oldTab != null) { //原数组
for (int j = 0; j < oldCap; ++j) { //通过原容量遍历原数组
Node<K,V> e;
if ((e = oldTab[j]) != null) { //判断node是否为空,将j位置上的节点
//保存到e,然后将oldTab置为空,这里为什么要把他置为空呢,置为空有什么好处吗??
//难道是吧oldTab变为一个空数组,便于垃圾回收?? 这里不是很清楚
oldTab[j] = null;
if (e.next == null) //判断node上是否有链表
newTab[e.hash & (newCap - 1)] = e; //无链表,确定元素存放位置,
//扩容前的元素地址为 (oldCap - 1) & e.hash ,所以这里的新的地址只有两种可能,一是地址不变,
//二是变为 老位置+oldCap
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
/* 这里如果判断成立,那么该元素的地址在新的数组中就不会改变。因为oldCap的最高位的1,在e.hash对应的位上为0,所以扩容后得到的地址是一样的,位置不会改变 ,在后面的代码的执行中会放到loHead中去,最后赋值给newTab[j];
如果判断不成立,那么该元素的地址变为 原下标位置+oldCap,也就是lodCap最高位的1,在e.hash对应的位置上也为1,所以扩容后的地址改变了,在后面的代码中会放到hiHead中,最后赋值给newTab[j + oldCap]
举个栗子来说一下上面的两种情况:
设:oldCap=16 二进制为:0001 0000
oldCap-1=15 二进制为:0000 1111
e1.hash=10 二进制为:0000 1010
e2.hash=26 二进制为:0101 1010
e1在扩容前的位置为:e1.hash & oldCap-1 结果为:0000 1010
e2在扩容前的位置为:e2.hash & oldCap-1 结果为:0000 1010
结果相同,所以e1和e2在扩容前在同一个链表上,这是扩容之前的状态。
现在扩容后,需要重新计算元素的位置,在扩容前的链表中计算地址的方式为e.hash & oldCap-1
那么在扩容后应该也这么计算呀,扩容后的容量为oldCap*2=32 0010 0000 newCap=32,新的计算
方式应该为
e1.hash & newCap-1
即:0000 1010 & 0001 1111
结果为0000 1010与扩容前的位置完全一样。
e2.hash & newCap-1
即:0101 1010 & 0001 1111
结果为0001 1010,为扩容前位置+oldCap。
而这里却没有e.hash & newCap-1 而是 e.hash & oldCap,其实这两个是等效的,都是判断倒数第五位
是0,还是1。如果是0,则位置不变,是1则位置改变为扩容前位置+oldCap。
再来分析下loTail loHead这两个的执行过程(假设(e.hash & oldCap) == 0成立):
第一次执行:
e指向oldTab[j]所指向的node对象,即e指向该位置上链表的第一个元素
loTail为空,所以loHead指向与e相同的node对象,然后loTail也指向了同一个node对象。
最后,在判断条件e指向next,就是指向oldTab链表中的第二个元素
第二次执行:
lotail不为null,所以lotail.next指向e,这里其实是lotail指向的node对象的next指向e,
也可以说是,loHead的next指向了e,就是指向了oldTab链表中第二个元素。此时loHead指向
的node变成了一个长度为2的链表。然后lotail=e也就是指向了链表中第二个元素的地址。
第三次执行:
与第二次执行类似,loHead上的链表长度变为3,又增加了一个node,loTail指向新增的node
......
hiTail与hiHead的执行过程与以上相同,这里就不再做解释了。
由此可以看出,loHead是用来保存新链表上的头元素的,loTail是用来保存尾元素的,直到遍
历完链表。 这是(e.hash & oldCap) == 0成立的时候。
(e.hash & oldCap) == 0不成立的情况也相同,其实就是把oldCap遍历成两个新的链表,
通过loHead和hiHead来保存链表的头结点,然后将两个头结点放到newTab[j]与
newTab[j+oldCap]上面去
*/
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null; //尾节点的next设置为空
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null; //尾节点的next设置为空
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
hashmap put 过程描述:
1.判断数组是否为空,如果是空,则创建默认长度位 16 的数组。
2.通过与运算计算对应 hash 值的下标,如果对应下标的位置没有元素,则直接创建一个。
3.如果有元素,说明 hash 冲突了,则再次进行 3 种判断。
1)判断两个冲突的key是否相等,equals 方法的价值在这里体现了。如果相等,则将已经存在的值赋给变量e。最后更新e的value,也就是替换操作。
2)如果key不相等,则判断是否是红黑树类型,如果是红黑树,则交给红黑树追加此元素。
3)如果key既不相等,也不是红黑树,则是链表,那么就遍历链表中的每一个key和给定的key是否相等。如果,链表的长度大于等于8了,则将链表改为红黑树,这是Java8 的一个新的优化。
4. 最后,如果这三个判断返回的 e 不为null,则说明key重复,则更新key对应的value的值。
5. 对维护着迭代器的modCount 变量加一。
6. 最后判断,如果当前数组的长度已经大于阀值了。则重新hash。