关于redis面试中常问的题目

某一天,面试官看到了我的简历,啪,很快啊,一眼就看到了我使用过redis。面试官心想,好小子,这不得好好问一下,我心中窃喜,还好我机智,早已经准备好关于redis的八股文面试题。嘿嘿,来吧,准备接招了。
下面的关于redis的面试题主要是根据我的简历和一些常见的redis问题组成。(这里为了内容饱满,实际回答问题根据情况具体对待)

1、常见的redis的几种数据类型和使用场景有哪些?

1.string:最基本的数据类型,二进制安全的字符串,最大512M。
应用场景:统计网站访问数量
2.list:按照添加顺序保持顺序的字符串列表。(2^32-1)
应用场景:评论、1.最新消息排行榜。2.消息队列,以完成多程序之间的消息交换
3.hash:key-value对的一种集合
场景:例如单点登录、购物车,存储、读取、修改用户属性(name,age,pwd等)
4.set:无序的字符串集合,不存在重复的元素。
应用场景:1.利用交集求共同好友。
	 2.利用唯一性,可以统计访问网站的所有独立IP。
	 3.好友推荐的时候根据tag求交集,大于某个threshold(临界值的)就可以推荐。
5.sorted set:已排序的字符串集合。
应用场景:热销商品排行榜

2、关于redis最新版本的数据类型和使用场景有哪些?

1.Bitmaps
简介:(1Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) ,
 但是它可以对字符串的位进行操作。
(2Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。
 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储01, 
 数组的下标在Bitmaps中叫做偏移量
应用场景:每个独立用户是否访问过网站存放在Bitmaps中, 将访问的用户记做1,
 没有访问的用户记做0, 用偏移量作为用户的id。
 简单总结:Bitmaps可以与set进行比较,
 当独立用户访问数量过多,选择Bitmaps可以节省很多的内存空间,
 当独立用户访问数据较少,选择set会更好一点,具体情况具体分析
 2.HyperLogLog
简介:HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积
非常非常大时,计算基数所需的空间总是固定的、并且是很小的。
在 Redis 里面,每个HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的
基数。
这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。
但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,
所以 HyperLogLog 不能像集合那样,返回输入的各个元素。
什么是基数?
比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 
基数(不重复元素)5。 基数估计就是在误差可接受的范围内,快速计算基数。
场景:像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?
这种求集合中不重复元素个数的问题称为基数问题。
解决基数问题有很多种方案:
(1)数据存储在MySQL表中,使用distinct count计算不重复个数
(2)使用Redis提供的hash、set、bitmaps等数据结构来处理
以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。
能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog
3.Geospatial
简介:GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis
基于
该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。
应用场景:获取两个位置之间的直线距离

3、介绍一下redis的发布/订阅?

Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。
比如我现在有一个微信公众号叫隔壁老王,然后张三,李四,王五这三个人都关注了这个公众号,这时,
我发布hello,那么这三个人都可以收到(订阅)到这个hello,
但是这个redis的发布/订阅和公众号有一点区别就是,你关注公众号了,你可以查看我以前发布的消息,
但是redis的发布/订阅无法查看以前发送的消息,即这个发布/订阅不具有持久化
注:发布的消息没有持久化,如果在订阅/发布前的客户端收不到hello,只能收到订阅后发布的消息

4、了解redis的事务操作吗?

Redis事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。
事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
Redis事务的主要作用就是串联多个命令防止别的命令插队。
从输入Multi命令开始,输入的命令都会依次进入命令队列中,但不会执行,
直到输入Exec后,Redis会将之前的命令队列中的命令依次执行。
组队的过程中可以通过discard来放弃组队。
组队中某个命令出现了报告错误,执行时整个的所有队列都会被取消
如果执行阶段某个命令报出了错误,则只有报错的命令不会被执行,而其他的命令都会执行,不会回滚。

5、介绍一下悲观锁和乐观锁?

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,
所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。
传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,
都是在做操作之前先上锁。

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,
所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。
乐观锁适用于多读的应用类型,这样可以提高吞吐量。Redis就是利用这种check-and-set机制实现事务的。

6、redis的事务特性?

单独的隔离操作 
	事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,
	不会被其他客户端发送来的命令请求所打断。 
没有隔离级别的概念 
	队列中的命令没有提交之前都不会实际被执行,因为事务提交前任何指令都不会被实际执行
不保证原子性
	事务中如果有一条命令执行失败,其后的命令仍然会被执行,没有回滚 

7、介绍一下redis的持久化?

redis的持久化主要有RDB和AOF
RDB(Redis Database):
在指定的时间间隔内将内存中的数据集快照写入磁盘, 也就是行话讲的Snapshot快照,
它恢复时是将快照文件直接读到内存里
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到 一个临时文件中,
待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。 整个过程中,
主进程是不进行任何IO操作的,这就确保了极高的性能 如果需要进行大规模数据的恢复,
且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。
RDB的缺点是最后一次持久化后的数据可能丢失。

AOF(Append Only File):
以日志的形式来记录每个写操作(增量保存),将Redis执行过的所有写指令记录下来(读操作不记录), 
只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,
redis 重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作
持久化流程如下:
(1)客户端的请求写命令会被append追加到AOF缓冲区内;
(2)AOF缓冲区根据AOF持久化策略[always,everysec,no]将操作sync同步到磁盘的AOF文件中;
(3)AOF文件大小超过重写策略或手动重写时,会对AOF文件rewrite重写,压缩AOF文件容量;
(4Redis服务重启时,会重新load加载AOF文件中的写操作达到数据恢复的目的;

官方推荐两个都启用。
如果对数据不敏感,可以选单独用RDB。
不建议单独用 AOF,因为可能会出现Bug。
如果只是做纯内存缓存,可以都不用。

8、了解Redis的主从复制吗?

主机数据更新后根据配置和策略, 自动同步到备机的master/slaver机制,
Master以写为主,Slave以读为主
在主机上写,在从机上可以读取数据
在从机上写数据报错
主机挂掉,重启就行,一切如初
从机重启需重设
可以将配置增加到文件中,这样永久生效。

常用的有以下几种方法:
1.一主二仆
2.薪火相传
3.反客为主

9、介绍一下哨兵模式(sentinel)

反客为主的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库
sentinel monitor mymaster 127.0.0.1 6379 1
其中mymaster为监控对象起的服务器名称, 1 为至少有多少个哨兵同意迁移的数量
当主机挂掉,从机选举中产生新的主机
(大概10秒左右可以看到哨兵窗口日志,切换了新的主机)
哪个从机会被选举为主机呢?根据优先级别:slave-priority 
原主机重启后会变为从机。
优先级在redis.conf中默认:slave-priority 100,值越小优先级越高
偏移量是指获得原主机数据最全的
每个redis实例启动后都会随机生成一个40位的runid

10、介绍一下redis集群?

Redis 集群实现了对Redis的水平扩容,即启动N个redis节点,将整个数据库分布存储在这N个节点中,
每个节点存储总数据的1/NRedis 集群通过分区(partition)来提供一定程度的可用性(availability): 
即使集群中有一部分节点失效或者无法进行通讯, 集群也可以继续处理命令请求。
即使连接的不是主机,集群会自动切换主机存储。主机写,从机读。
无中心化主从集群。无论从哪台主机写的数据,其他主机上都能读到数据。
优点:
实现扩容
分摊压力
无中心配置相对简单
缺点:
多键操作是不被支持的 
多键的Redis事务是不被支持的。lua脚本不被支持
由于集群方案出现较晚,很多公司已经采用了其他的集群方案,而代理或者客户端分片的方案
想要迁移至redis cluster,需要整体迁移而不是逐步过渡,复杂度较大。

11、简单介绍一下缓存雪崩、缓存击穿、缓存穿透?

缓存雪崩:
存储在redis中的数据大量过期
解决方案:
(1)构建多级缓存架构:nginx缓存 + redis缓存 +其他缓存(ehcache等)
(2)使用锁或队列:
用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,
从而避免失效时大量的并发请求落到底层存储系统上。不适用高并发情况
(3)设置过期标志更新缓存:
记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存。
(4)将缓存失效时间分散开:
比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,
这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
缓存击穿:
redis中缓存信息不存在,数据库中存在信息,此时大量并发请求过来,造成缓存击穿。
解决问题:
(1)预先设置热门数据:在redis高峰访问之前,把一些热门数据提前存入到redis里面,
加大这些热门数据key的时长
(2)实时调整:现场监控哪些数据热门,实时调整key的过期时长
(3)使用锁:
	(1)就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db。
	(2)先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX)去set一个mutex key
	(3)当操作返回成功时,再进行load db的操作,并回设缓存,最后删除mutex key;
	(4)当操作返回失败,证明有线程在load db,当前线程睡眠一段时间再重试整个get缓存的方法。
缓存穿透:
redis缓存信息和数据库中信息都不存在,此时大量并发请求过来,造成缓存穿透
解决方案:
(1)对空值缓存:如果一个查询返回的数据为空(不管是数据是否不存在),
我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟
(2)设置可访问的名单(白名单):
使用bitmaps类型定义一个可以访问的名单,名单id作为bitmaps的偏移量,
每次访问和bitmap里面的id进行比较,如果访问id不在bitmaps里面,进行拦截,不允许访问。
(3)采用布隆过滤器:(布隆过滤器(Bloom Filter)是1970年由布隆提出的。
它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。布隆过滤器可以
用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,
缺点是有一定的误识别率和删除困难。)
将所有可能存在的数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被这个bitmaps拦截掉,
从而避免了对底层存储系统的查询压力。
(4)进行实时监控:当发现Redis的命中率开始急速降低,需要排查访问对象和访问的数据,
和运维人员配合,可以设置黑名单限制服务

12、介绍一下分布式锁?

随着业务发展的需要,原单体单机部署的系统被演化成分布式集群系统后,由于分布式系统多线程、
多进程并且分布在不同机器上,这将使原单机部署情况下的并发控制锁策略失效,
单纯的Java API并不能提供分布式锁的能力。为了解决这个问题就需要一种跨JVM的互斥机制来控制
共享资源的访问,
这就是分布式锁要解决的问题!
分布式锁常见的三种实现方式:
1.数据库乐观锁;
2.基于Redis的分布式锁;
3.基于ZooKeeper的分布式锁。

Redid分布式锁 实现要点:setnx+过期时间
1.互斥性,同一时刻,只能有一个客户端持有锁。
2.防止死锁发生,如果持有锁的客户端崩溃没有主动释放锁,也要保证锁可以正常释放及
其他客户端可以正常加锁。
3.加锁和释放锁必须是同一个客户端。
4.容错性,只要redis还有节点存活,就可以进行正常的加锁解锁操作。

正确加锁释放方式:
1.命令必须保证互斥:redis的setnx:setnx返回ok,说明拿到了锁,返回nil说明锁被其他线程占领了。
2.设置的key必须要有过期时间,防止崩溃时锁无法释放
3.value使用唯一id标志每个客户端(UUID),保证只有锁的持有者才可以释放锁
第一次返回1,后面返回0

13、秒杀过程中,redis和数据库怎么保证一致性?

在这里插入图片描述
普通情况:
更新的时候,先删除缓存,然后再更新数据库。
读的时候,先读缓存;如果没有的话,就读数据库,同时将数据放入缓存,并返回响应。
高并发情况:
可以先把“修改DB”的操作放到一个JVM队列,后面读请求过来之后,“更新缓存”的操作也放进同一个rabbit队列,每个队列,对于一个作业线程,按照队列的顺序,依次执行相关操作,这样就可以保证“更新缓存”一定是在DB修改之后,以保证数据一致性
在这里插入图片描述
优化方案:
1、读请求过多的时候,队列里面会有多个“更新缓存”操作串在一起,其实是没有意义的,往队列里面塞数据的时候可以先判断一下,有的话就不用再塞进去了
在这里插入图片描述
2、遇到更新DB比较频繁的业务场景时,可能会导致读请求长时间阻塞,这个时候可以通过扩机器增加吞吐量,或者可以先返回一个旧的值。
在这里插入图片描述

14、redis的淘汰策略?

相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
redis 提供6种数据淘汰策略:
1.voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
2.volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
3.volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
4.allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
5.allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
6.no-enviction(驱逐):禁止驱逐数据

关于redis的面试题总结的基本就是这些了,欢迎大家提出其他的redis问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨殇离陌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值