城市空中交通仿真与优化:基于BFS路径规划与随机策略对比

无人机技术在物流、安防等领域的应用越来越广泛,而在复杂的城市环境中,如何进行高效的空域管理成为关键课题。本文将展示一个使用 Python 和 gym 构建的城市空中交通仿真系统,结合 BFS 路径规划和随机策略的对比研究,探索无人机飞行调度与路径优化的实际应用。


一、背景与目标

无人机在城市空域中的运行面临以下核心挑战:

  1. 路径规划:无人机需要从起点到达终点,同时避开障碍物和禁飞区。
  2. 碰撞检测:确保在高密度空域中飞行器之间不发生碰撞。
  3. 动态环境适应:考虑天气(如风力)等环境因素对飞行的影响。
  4. 性能评估:通过多指标评估不同策略的有效性。

本文实现了一个三维仿真环境,支持以下功能:

  • 使用 BFS 算法进行最短路径规划,避开禁飞区和越界区域。
  • 对比 BFS 策略和随机策略的性能差异。
  • 模拟风力对无人机运动的扰动,增加仿真真实性。
  • 输出结果数据和可视化图表,便于直观比较不同策略的表现。

二、功能实现

1. 核心代码结构

代码由以下模块组成,每个模块对应特定功能:

├── WeatherSystem         # 天气系统,生成风向风速
├── CityAirTrafficEnv3D   # 仿真环境,负责状态更新、禁飞区检测等
├── bfs_policy            # 基于BFS的路径规划策略
├── random_policy         # 随机策略
├── run_simulation        # 仿真主逻辑
├── analyze_and_save      # 数据分析与结果保存
└── main                  # 主函数,运行仿真与对比

以下将逐一介绍主要功能。


2. 仿真环境

环境设计

CityAirTraffic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值