无人机技术在物流、安防等领域的应用越来越广泛,而在复杂的城市环境中,如何进行高效的空域管理成为关键课题。本文将展示一个使用 Python 和 gym
构建的城市空中交通仿真系统,结合 BFS 路径规划和随机策略的对比研究,探索无人机飞行调度与路径优化的实际应用。
一、背景与目标
无人机在城市空域中的运行面临以下核心挑战:
- 路径规划:无人机需要从起点到达终点,同时避开障碍物和禁飞区。
- 碰撞检测:确保在高密度空域中飞行器之间不发生碰撞。
- 动态环境适应:考虑天气(如风力)等环境因素对飞行的影响。
- 性能评估:通过多指标评估不同策略的有效性。
本文实现了一个三维仿真环境,支持以下功能:
- 使用 BFS 算法进行最短路径规划,避开禁飞区和越界区域。
- 对比 BFS 策略和随机策略的性能差异。
- 模拟风力对无人机运动的扰动,增加仿真真实性。
- 输出结果数据和可视化图表,便于直观比较不同策略的表现。
二、功能实现
1. 核心代码结构
代码由以下模块组成,每个模块对应特定功能:
├── WeatherSystem # 天气系统,生成风向风速
├── CityAirTrafficEnv3D # 仿真环境,负责状态更新、禁飞区检测等
├── bfs_policy # 基于BFS的路径规划策略
├── random_policy # 随机策略
├── run_simulation # 仿真主逻辑
├── analyze_and_save # 数据分析与结果保存
└── main # 主函数,运行仿真与对比
以下将逐一介绍主要功能。
2. 仿真环境
环境设计
CityAirTraffic