在当今的金融市场中,海量的股票数据让投资者难以快速找到潜在的投资机会。本文将带你一步步构建一个基于Python和Dash的智能股票筛选与可视化系统,帮助你从数千只股票中快速筛选出符合量价异动和主力建仓条件的股票,并通过交互式图表进行深入分析。
1. 项目背景与目标
股票市场瞬息万变,投资者需要快速识别出那些可能即将爆发的股票。传统的股票筛选方法往往依赖于手动分析,效率低下且容易错过机会。我们的目标是构建一个自动化系统,能够:
-
自动筛选股票:通过量价异动和主力建仓等条件,筛选出潜在的优质股票。
-
数据可视化:通过交互式图表展示股票的走势、技术指标和资金流向。
-
高效缓存:利用本地缓存机制,减少对Tushare API的频繁调用,提升系统性能。
2. 技术栈
-
Python:作为核心编程语言,负责数据处理和逻辑实现。
-
Tushare:提供股票数据的API接口。
-
Pandas:用于数据处理和分析。
-
Dash:用于构建交互式Web应用。
-
Plotly:用于生成交互式图表。
-
Pandas_TA:用于计算技术指标(如MACD、RSI等)。
-
Concu