基于MediaPipe的智能俯卧撑计数与姿势矫正系统

在现代健身和体能训练中,俯卧撑是最基础也是最有效的自重训练动作之一。然而,许多人在进行俯卧撑训练时常常存在姿势不正确、计数不准确等问题。本文将介绍如何利用计算机视觉和姿态估计技术,开发一个智能的俯卧撑计数与姿势矫正系统。

技术背景

本系统主要基于以下核心技术:

  1. MediaPipe Pose解决方案:Google开发的实时姿态估计框架

  2. OpenCV:计算机视觉处理库

  3. NumPy:科学计算库,用于角度计算

  4. Pandas:数据处理库,用于训练数据记录

系统架构

1. 姿态检测模块

系统首先通过MediaPipe Pose解决方案检测视频中的人体姿态:

pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)

MediaPipe Pose提供了33个关键点,涵盖了人体的主要关节部位,包括肩部、肘部、腕部、髋部、膝盖和脚踝等。

2. 关键角度计算

系统通过计算关节之间的角度来判断俯卧撑的完成度和姿势正确性:

def calculate_angle(a, b, c)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值