自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 前端面试(五)React

React 串讲问题列表Redux 是如何将 State 注入到 React 组件上去Redux 在实际项目中的使用以及问题React 中的 Hooks学习目标 了解 Redux 与 React-Redux 之间的关系以及它们的基本原理 了解一些关于 Redux 的最佳实践以及异步问题解决方案 了解 React Hooks 的特性以及如何在实际项目中使用 React Hooks问题详解1. Redux 是如何将 State 注入到 React 组件上去问题分析React:用

2020-11-30 14:53:04 15

原创 前端面试(四)Promise

课程介绍正处于春招的黄金时期,为了帮助大家找到更好的工作,更快的找到工作。组织本次的专项课程。今日的课程主题是 项目,会讲到公司项目研发的流程。因为项目一般不是面试时候的核心考察点,所以今天还会讲到一些项目中经典问题及解法。因为时间有限, 老师这里准备的都是面试中最常见的问题,以讲义内容为主, 如果讲解完毕后仍有时间, 我们再继续扩展其他学习目标 理解 promise 主要解决的问题及常规用法 能够写出一个可以被链式调用的函数 能粗略的实现 promise的基本结构 可以自己封装一般

2020-11-30 13:59:17 17

原创 前端面试(二)HTTP

学习目标一次完整的http服务过程 能够说出一次完整的http服务的几个阶段 能够说出html的渲染过程 能够说出常见的http请求状态码http缓存控制 能够理解http缓存控制 主要是指浏览器缓存 知道强缓存和协商缓存 知道http强缓存的控制字段 知道协商缓存的配置方式和各自的优缺点fetch与axios 理解fetch和axios分别是什么? 掌握fetch的优缺点 掌握axios的优缺点浏览器内多个标签页之间的通讯 知道浏览器多个标签页通讯的常见使用场景

2020-11-30 10:10:28 46

原创 前端面试(三)VUE

Vue部分相关的面试题vue传值‘1 父 子 传值 使用props接受2 子 父 传值 父亲写事件函数 子 $emit触发 传值3 兄弟传值 $bus 中转站4 如果组件之间 关系很远 是很多组件都要用的值 vuexvuex 就是一个全局状态数据管理 简单来说 他的数据类似全局变量 哪个组件都可以使用在项目中使用vuex下载 vuex 包 并导入 use一下import Vuex from 'vuex'Vue.use(Vuex)需要new 一下 写上全

2020-11-28 21:16:36 27

原创 前端面试(一)移动端

前端学科面试题1:HTML页面进行重绘和重排(回流)1.1 问题分析​ 该问题主要考核 html中的优化 与 重点概念1.2 核心问题讲解浏览器的运行机制:构建DOM树(parse):渲染引擎解析HTML文档,首先将标签转换成DOM树中的DOM node(包括js生成的标签)生成内容树(Content Tree/DOM Tree);构建渲染树(construct):解析对应的CSS样式文件信息(包括js生成的样式和外部css文件),而这些文件信息以及HTML中可见的指令(如),构建渲染树(

2020-11-28 20:22:45 13

原创 Java分布式基础

1. 整体介绍[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0EgtrZir-1590997399364)(images/image-20200422211607028.png)]1)安装vagrant2)安装Centos7$ vagrant init centos/7A `Vagrantfile` has been placed in this directory. You are nowready to `vagrant up` your first virt

2020-11-26 10:38:18 194

原创 2020.11.24组会报告

1.EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks摘要卷积神经网络(ConvNets)通常是在固定资源预算下开发的,如果有更多资源可用,则会进行扩展以提高准确性。在本文中,我们系统地研究了模型缩放,并确定仔细平衡网络的深度,宽度和分辨率可以带来更好的性能。我们提出了一种新的缩放方法,该方法使用简单而高效的复合系数来均匀缩放深度/宽度/分辨率的所有维度。EfficientNet-B7在ImageNet

2020-11-26 10:16:02 10

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除