题目描述
小爱经营了一家牧场生产牛奶,接下来 n 天时间里,每天都有订单,其中第 i 天,必须发出 ai 箱牛奶。生产牛奶的成本来自于两方面:
- 一是材料费。原料价格每天都会变化,如果选择在第i天生产牛奶,需要为每箱牛奶支付 ci 元的材料费。
- 二是存储费。如果原材料成本上涨,可以提前把牛奶做好,放在冷库里保存,但需要支付仓储费,一箱牛奶存放一天的成本是 s 元。
每天的产能都没有上限,也就是说可以在任一天生产出任意多数量的牛奶,冷库的容量也没有上限,且假设牛奶可以存放任意长的时间。
请问,为了满足这些订单的要求,小爱应该如何规划每天的产量,又如何存储,才能把总成本控制到最小?
输入格式
第一行:两个整数 n 和 s。
第二行到第 n+1 行:第 i+1 行有两个整数 ci 和 ai。
输出格式
单个整数:表示为了满足所有订单的最小总成本。
数据范围
- 1≤s≤100,000;
- 1≤ci≤100,000;
- 1≤ai≤100,000;
- 对于 30% 的数据,1≤n≤20;
- 对于 60% 的数据&#