1223:An Easy Problem
时间限制: 1000 ms 内存限制: 65536 KB
【题目描述】
给定一个正整数N,求最小的、比N大的正整数M,使得M与N的二进制表示中有相同数目的1。
举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么最小的比N大的并且二进制表示中只包含4个1的数是83,其二进制是1010011,因此83就是答案。
【输入】
输入若干行,每行一个数n(1≤n≤1000000),输入"0"结束。
【输出】
输出若干行对应的值。
【输入样例】
1
2
3
4
78
0
【输出样例】
2
4
5
8
83
解析:从下一个数开始找相同个1的数,找到的第一个就是答案,最差情况的时间复杂度为O(NlogN)
详见代码:
#include <bits/stdc++.h>
using namespace std;
int jgy(int x) { //计算x的二进制中有几个1
int ret = 0;
while (x > 0) {
if(x % 2 == 1) {
ret++;
}
x /= 2;
}
return ret;
}
int n;
int main() {
while(cin >> n) {
if(n == 0) {
break;
}
int t = jgy(n);
n++;//从n+1开始找a个1的数
while(t != jgy(n)) { //如果不是
n++;//继续加1
}
cout << n << endl;
}
return 0;
}
另一种解法:转化为二进制后,找到第一个可以向前移动的1(前边一位是0),移动它,然后把他身后所有的1,挪到末尾,时间复杂度为常数。
#include <bits/stdc++.h>
using namespace std;
int a[50];
int n;
int main() {
while(cin >> n) {
if(n == 0) {
break;
}
memset(a,0,sizeof(a));
for(int i=1;n>0;i++){
a[i]=n%2;
n/=2;
}
int t;
for(int i=1;i<32;i++){
if (a[i]==1&&a[i+1]==0){
swap(a[i],a[i+1]);
t=i;
break;
}
}
for(int i=t-1,j=1;i>j;i--,j++){
swap(a[i],a[j]);
}
int ans=0;
for(int i=32;i>=1;i--){
ans=ans*2+a[i];
}
cout<<ans<<endl;
}
return 0;
}