信息学奥赛一本通 1223:An Easy Problem 贪心算法

1223:An Easy Problem


时间限制: 1000 ms         内存限制: 65536 KB

【题目描述】

给定一个正整数N,求最小的、比N大的正整数M,使得M与N的二进制表示中有相同数目的1。

举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么最小的比N大的并且二进制表示中只包含4个1的数是83,其二进制是1010011,因此83就是答案。

【输入】

输入若干行,每行一个数n(1≤n≤1000000),输入"0"结束。

【输出】

输出若干行对应的值。

【输入样例】

1
2
3
4
78
0

【输出样例】

2
4
5
8
83

解析:从下一个数开始找相同个1的数,找到的第一个就是答案,最差情况的时间复杂度为O(NlogN)

详见代码:

#include <bits/stdc++.h>
using namespace std;
int jgy(int x) { //计算x的二进制中有几个1
    int ret = 0;
    while (x > 0) {
        if(x % 2 == 1) {
            ret++;
        }
        x /= 2;
    }
    return ret;
}
int n;
int main() {
    while(cin >> n) {
        if(n == 0) {
            break;
        }
        int t = jgy(n);
        n++;//从n+1开始找a个1的数
        while(t != jgy(n)) { //如果不是
            n++;//继续加1
        }
        cout << n << endl;
    }
    return 0;
}

另一种解法:转化为二进制后,找到第一个可以向前移动的1(前边一位是0),移动它,然后把他身后所有的1,挪到末尾,时间复杂度为常数。

#include <bits/stdc++.h>
using namespace std;
int a[50];
int n;
int main() {
    while(cin >> n) {
        if(n == 0) {
            break;
        }
        memset(a,0,sizeof(a));
        for(int i=1;n>0;i++){
            a[i]=n%2;
            n/=2;
        }
        int t;
        for(int i=1;i<32;i++){
            if (a[i]==1&&a[i+1]==0){
                swap(a[i],a[i+1]);
                t=i;
                break;
            }
        }
        for(int i=t-1,j=1;i>j;i--,j++){
            swap(a[i],a[j]);
        }
        int ans=0;
        for(int i=32;i>=1;i--){
            ans=ans*2+a[i];
        }
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值