信息学奥赛一本通 1286:怪盗基德的滑翔翼 动态规划基本型

文章讲述了怪盗基德利用滑翔翼从被盗现场逃脱的故事,通过计算最长上升和下降子序列来确定在动力受损情况下,他能经过的最多不同建筑顶部数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1286:怪盗基德的滑翔翼

时间限制: 1000 ms         内存限制: 65536 KB

【题目描述】

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

【输入】

输入数据第一行是一个整数K(K<100),代表有K𝐾组测试数据。

每组测试数据包含两行:第一行是一个整数N(N<100),代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0<h<10000),按照建筑的排列顺序给出。

【输出】

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

【输入样例】

3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10

【输出样例】

6
6
9

 解析:

因为可以两个方向滑翔,所以取最长上升子序列和最长下降子序列,取最大值即为答案;

详见代码:

#include<bits/stdc++.h>
using namespace std;
int k,n;
int a[105];
int dp1[105];//dp1[i]是以i为结尾的最长下降子序列
int dp2[105];//dp1[i]是以i为结尾的最长上升子序列
int main() {
    cin>>k;
    while(k--){
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>a[i];
        }
        int ans=1;
        for(int i=1;i<=n;i++){//枚举每一个
            dp1[i]=1;//默认1
            dp2[i]=1;//默认1
            for(int j=i-1;j>=1;j--){//枚举之前的
                if (a[i]<a[j]&&dp1[i]<dp1[j]+1){//如果i栋低于j栋且排在j之后更长
                    dp1[i]=dp1[j]+1;//更新
                }
                if (a[i]>a[j]&&dp2[i]<dp2[j]+1){//如果i栋高于j栋且排在j之后更长
                    dp2[i]=dp2[j]+1;
                }
            }
            ans=max(dp1[i],ans);//取最大值
            ans=max(dp2[i],ans);
        }
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值