Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once.
Find all the elements of [1, n] inclusive that do not appear in this array.
给定一组整数,其中1个i n(n=数组的大小),一些元素出现两次,而另一些元素出现一次。
找到包含在这个数组中的1、n的所有元素。
Input: [4,3,2,7,8,2,3,1] Output: [5,6]这个算法,解法有很多,不过最灵气的就是使用正负号标志法。不过网上很多的博客都没有详细的解释,我打算在这篇博客中详细的解释一下。
首先这个所谓的正负号标志法,是根据特定条件来具体实施的。首先,数组下标为0—n-1。数组元素范围是1—n。那么就是说如果数组内的元素都不重复,那么每个元素的值减一都能得到下标值。也就是说:nums[i]-1必然等于下标值(下标值取自0—n-1)。故此只要有一个数重复,那么数组元素所对应的下标值也会重复。
接下来看一下代码:
public class Solution
{
int j;
int i=0;
int sub;
int m;
public List<Integer> findDisappearedNumbers(int[] nums)
{
List<Integer> list=new ArrayList<Integer>();
if(nums!=null)
{
for(int i=0;i<nums.length;i++)
{
int index=Math.abs(nums[i])-1;
if(nums[index]>0)
{
nums[index]=-nums[index];
}
}
}
for(int j=0;j<nums.length;j++)
{
if(nums[j]>0)
{
list.add(j+1);
}
}
return list;
}
}
接下来做代码解释:
1.
int index=Math.abs(nums[i])-1
nums[i]是数组元素值,使用绝对值函数,求出每个数组元素对应的下标也就是索引。
2.
if(nums[index]>0) { nums[index]=-nums[index]; }
判断条件:数组元素为正时,说明还没有被标记,则取其相反数进行标记。按照这样的标记可得:
运算结果为[-4, -3, -2, -7, 8, 2, -3, -1]
对应下标为 0, 1, 2, 3, 4,5, 6, 7
大家可以看到只有8、2没有被标记,说明nums[index]没有等于4、5下标所对应的值。也就是说,index没有等于4、5.
又因为index+1=nums[i],因此查找结果为5(4+1)、6(5+1)。
到此这个算法算是解决完毕了。欢迎大家留言相互讨论。