在本章介绍一下数值分析里的插值法,分为Lagrange插值和Newton插值。
引述:在很多时候我们都会遇到这样类似的问题,飞机失事后将会坠落在哪里,卫星太空飞船返航会坠落在哪里,,等等类似的问题。将其抽象成数学问题,就是已知N个坐标对,形如(x1,y1),(x2,y2),,,,(xn,yn)要推算出后面或中间的点对位置,这就需要我们构造一个近似的函数来逼近原函数,使得近似函数经过或逼近那n个点。而数学上常用多项式来逼近原函数;(数学表达不是很恰当,大概意思明白即可)
具体的数学过程就不写了,有不清楚的地方可以去查一下,这里主要是代码。
1.Lagrange (拉格朗日)插值法
class Point{
public String x;
public String y;
}
class Point_cal{
public double x;
public double y;
}
public class Lagrange {
//拉格朗日 插值法