并查集是一种树型的数据结构,用于处理一些不交集(Disjoint Sets)的合并及查询问题。有一个联合-查找算法(union-find algorithm)定义了两个用于此数据结构的操作:
Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
Union:将两个子集合并成同一个集合。
由于支持这两种操作,一个不相交集也常被称为联合-查找数据结构(union-find data structure)或合并-查找集合(merge-find set)。其他的重要方法,MakeSet,用于创建单元素集合。有了这些方法,许多经典的划分问题可以被解决。
这是并查集森林的最基础的表示方法,这个方法不会比链表法好,这是因为创建的树可能会严重不平衡;然而,可以用两种办法优化。
第一种方法,称为“按秩合并”,即总是将更小的树连接至更大的树上。因为影响运行时间的是树的深度,更小的树添加到更深的树的根上将不会增加秩除非它们的秩相同。在这个算法中,术语“秩”替代了“深度”,因为同时应用了路径压缩时(见下文)秩将不会与高度相同。单元素的树的秩定义为0,当两棵秩同为r的树联合时,它们的秩r+1。只使用这个方法将使最坏的运行时间提高至每个MakeSet、Union或Find操作O(
log n)。
java代码实现:
public class UnionFind5 implements UF {
private int[] parent;
private int[] rank;
public UnionFind5(int size) {
parent = new int[size];
rank = new int[size];
for (int i = 0; i < size; i++) {
parent[i] = i;
rank[i] = 1;
}
}
@Override
public int getSize() {
return parent.length;
}
private int find(int p) {
if (p < 0 && p > parent.length) {
throw new IllegalArgumentException("p is out of bound");
}
while (p != parent[p]) {
parent[p]=parent[parent[p]];
p = parent[p];
}
return p;
}
@Override
public boolean isConnected(int q, int p) {
return find(q) == find(p);
}
@Override
public void unionElement(int q, int p) {
int qRoot = find(q);
int pRoot = find(p);
if (qRoot == pRoot) {
return;
} else {
//将元素少的合并到元素多的上
if (rank[qRoot] > rank[pRoot]) {
parent[pRoot] = qRoot;
} else if (rank[qRoot] < rank[pRoot]) {
parent[qRoot] = pRoot;
} else {//rank[qRoot] == rank[pRoot
parent[qRoot] = pRoot;
rank[pRoot] += 1;
}
}
}
public static void main(String[] args) {
System.out.println("123");
}
}