并查集的实现与优化

并查集是一种树型的数据结构,用于处理一些不交集(Disjoint Sets)的合并及查询问题。有一个联合-查找算法(union-find algorithm)定义了两个用于此数据结构的操作:

Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
Union:将两个子集合并成同一个集合。
由于支持这两种操作,一个不相交集也常被称为联合-查找数据结构(union-find data structure)或合并-查找集合(merge-find set)。其他的重要方法,MakeSet,用于创建单元素集合。有了这些方法,许多经典的划分问题可以被解决。

初始化时是森林
Union操作!
在这里插入图片描述
这是并查集森林的最基础的表示方法,这个方法不会比链表法好,这是因为创建的树可能会严重不平衡;然而,可以用两种办法优化。
第一种方法,称为“按秩合并”,即总是将更小的树连接至更大的树上。因为影响运行时间的是树的深度,更小的树添加到更深的树的根上将不会增加秩除非它们的秩相同。在这个算法中,术语“秩”替代了“深度”,因为同时应用了路径压缩时(见下文)秩将不会与高度相同。单元素的树的秩定义为0,当两棵秩同为r的树联合时,它们的秩r+1。只使用这个方法将使最坏的运行时间提高至每个MakeSet、Union或Find操作O(
log n)。
在这里插入图片描述
在这里插入图片描述
java代码实现:

public class UnionFind5 implements UF {
    private int[] parent;
    private int[] rank;

    public UnionFind5(int size) {
        parent = new int[size];
        rank = new int[size];
        for (int i = 0; i < size; i++) {
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize() {
        return parent.length;
    }

    private int find(int p) {
        if (p < 0 && p > parent.length) {
            throw new IllegalArgumentException("p is out of bound");
        }
        while (p != parent[p]) {
            parent[p]=parent[parent[p]];
            p = parent[p];
        }
        return p;
    }

    @Override
    public boolean isConnected(int q, int p) {
        return find(q) == find(p);
    }

    @Override
    public void unionElement(int q, int p) {
        int qRoot = find(q);
        int pRoot = find(p);
        if (qRoot == pRoot) {
            return;
        } else {
            //将元素少的合并到元素多的上
            if (rank[qRoot] > rank[pRoot]) {
                parent[pRoot] = qRoot;
            } else if (rank[qRoot] < rank[pRoot]) {
                parent[qRoot] = pRoot;
            } else {//rank[qRoot] == rank[pRoot
                parent[qRoot] = pRoot;
                rank[pRoot] += 1;
            }
        }
    }
    public static void main(String[] args) {
        System.out.println("123");
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值