LeetCode练习题120. Triangle

这是一篇关于LeetCode第120题的解析,题目要求找到从三角形顶部到底部的最小路径和。文章讨论了使用递归和动态规划两种方法解决此问题,指出递归方法在处理大型数据时可能会导致Time Limit Exceeded,而动态规划是此题的正确解决方案。
摘要由CSDN通过智能技术生成

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

递归方法

这道题的数据结构很像二叉树的结构,我们可以用递归遍历二叉树的思想来遍历所有的可能的路径,以求出最小的路径权重和。

定义一个辅助的递归函数 int myRecursion(vector<vector<int>>& triangle, int i, int j),这个第一个参数为原三角形,第二和第三个参数(i,j)代表当前遍历到的三角形的节点位置,返回值为以当前节点(i&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值