关于pytorch自带的CTCloss使用时的注意事项

本文讲述了在从百度CTC Loss切换到PyTorch自带的CTC Loss时遇到的问题,主要集中在log_softmax操作的差异。解决办法是在网络输出层添加.log_softmax,以确保正确处理概率分布。
摘要由CSDN通过智能技术生成

涉及到语音项目或者CRNN的LSTM等训练时,通常会用到CTCLoss,在使用低版本的pytorch的时候,一种用的是百度CTCloss,由于换了3090的卡,pytorch也强行升级到1.8版本,没办法和百度CTC兼容了,换回自带的from torch.nn import CTCLoss,

发现训练很久都没有预测内容。原来和百度CTC不同的是,pytorch自带的CTCloss的输入要经过log_softmax才可以。在训练时候网络的输出层加上

net(image).log_softmax()

问题解决。

 

PyTorch中的CTCLoss是指Connectionist Temporal Classification Loss,它是一种用于解决神经网络标签和输出不对齐问题的方法。CTCLoss的优点是不需要强制对齐标签且标签可以是可变长度的。它主要应用于场景文本识别、语音识别和手写字识别等工程场景。在PyTorch 1.0.x版本内,已经内置了CTCLoss接口,可以直接使用。下面是一个使用CTCLoss的代码示例: ```python import torch import torch.nn as nn ctc_loss = nn.CTCLoss() log_probs = torch.randn(50, 16, 20).log_softmax(2).requires_grad_() targets = torch.randint(1, 20, (16, 30), dtype=torch.long) input_lengths = torch.full((16,), 50, dtype=torch.long) target_lengths = torch.randint(10, 30, (16,), dtype=torch.long) loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) loss.backward() ``` 在这个示例中,我们首先创建了一个CTCLoss实例,然后生成了一些随机的log probabilities作为网络的输出。接着,我们生成了一些随机的目标标签和输入长度以及目标长度。最后,我们使用CTCLoss计算了损失,并进行了反向传播。\[2\] 在创建CTCLoss实例,可以通过设置参数来自定义一些属性。例如,可以使用`blank`参数来指定空白符的序号,`reduction`参数来指定损失的计算方式。\[3\] 希望这个回答对你有帮助! #### 引用[.reference_title] - *1* [如何使用pytorch内置torch.nn.CTCLoss的方法&&车牌识别应用](https://blog.csdn.net/CSDNwei/article/details/120223026)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [pytorch的torch.nn.CTCLoss方法](https://blog.csdn.net/benben044/article/details/125130411)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Pytorch中的CTC loss](https://blog.csdn.net/fidbdiej/article/details/124587812)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值