Tensorflow项目实战(一)--基本目录结构

TF


本博客旨在探索github科研项目的写法,从而达到能够快速理解科研项目和自己写科研项目的目的

前言:

初学者,比如我,很难读懂并理解github上作者的开源代码,以至于每次只能照办别人的代码,顶多就是把别人的搞到能跑,但这并不是所谓的代码复现,也很难对源码进行改进。

有的人说:看多了自然就懂了,写多了自然就会了。其实不然,纵然把网上Tensorflow的AlexNet,VGG等看懂,学会的不过是基本的、不成体系的写法,一般是把所有内容放在一处,并不带有复杂的数据集处理,模型保存与恢复,命名空间管理等基本功能。

所以建立项目思维是很重要的,本博文旨在总结和归纳TensorFlow科研项目的共同点,让我们先从基本目录结构讲起。

正文

当我们看过超过三篇论文的代码复现就会发现,无论是pytorch还是tensorflow项目,都有相似的目录结构!

在这里插入图片描述

在这里插入图片描述

总结来说,我个人喜欢的目录结构如下:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值