【论文解读|ECMLPKDD2020】GIKT: A Graph-based Interaction Model for Knowledge Tracing

在这里插入图片描述


【注】利用GCN建模问题和技能点(知识点)之间的关系
本文中所说的技能类似于GKT和HGKT中的 知识点

摘要

随着网络教育的快速发展,知识追踪已经成为一个跟踪学生知识状况、预测学生新问题表现的基本问题。在线教育系统中的问题通常很多,而且总是与较少的技能相关。然而,以往的文献并没有将问题信息与高阶问题-技能关系结合起来,这主要受到数据稀疏性和多技能问题的限制。从模型的角度来看,以往的模型很难捕捉到学生练习历史的长期依赖性,也不能以连续的方式对学生问题和学生技能之间的关系进行建模。本文提出了一种基于图的知识追踪交互模型(GIKT)来解决上述问题。更具体地说,GIKT利用了图卷积网络(GCN),通过嵌入传播实质上结合了问题技能的相关性。此外,考虑到相关的问题通常分散在整个练习历史中,问题和技能只是知识的不同实例,GIKT将学生对问题的掌握程度概括为学生当前状态、学生历史相关练习、目标问题,以及相关技能。在三个数据集上的实验表明,GIKT达到了新的最先进的性能,具有至少1%的绝对AUC提高。

1 引言

在mooc或智能辅导系统等在线学习平台中,知识追踪(KT)[6]是一项必不可少的任务,旨在追踪学生的知识状态。KT在口语水平上解决了根据学生之前的学习经历预测他们是否能正确回答新问题的问题。KT任务已被广泛研究,并提出了各种方法来处理它。
现有的KT方法[21,35,2]通常基于目标问题所对应的技能而不是问题本身建立预测模型。在KT任务中,存在多个技能和多个问题,其中一个技能与多个问题相关,一个问题可能对应多个技能,可以用关系图来表示,如图1所示。由于假设技能掌握能在一定程度上反映出学生是否能够正确回答相关问题,所以像之前的KT一样,根据技能进行预测也是可行的。
在这里插入图片描述
虽然这些纯粹基于技能的知识追踪方法取得了经验上的成功,但忽视了问题的特征,这可能导致绩效的下降。例如,在图1中,尽管q2和q3这两个问题共享相同的技能,但它们不同的难度可能导致正确答案的概率不同。为此,之前的一些工作[14]利用问题特征作为技能输入的补充。但是,由于问题的数量通常很大,很多学生只尝试一小部分问题,大多数问题只有少数学生回答,导致数据稀疏性问题[28]。此外,对于那些共享部分相同技能的问题(如q1和q4),单纯增加问题特征会失去潜在的问题间和技能间信息。基于这些考虑,利用问题和技能之间的高阶信息是很重要的

本文首先研究了如何有效地提取问题-技能关系图中的高阶关系信息。图神经网络(gnn)[26,13,10]通过聚合邻居的信息来提取图表示的强大功能,我们利用图卷积网络(GCN)从高阶关系中学习问题的嵌入和技能。问题嵌入和技能嵌入聚合后,我们可以直接将问题嵌入和相应的答案嵌入作为KT模型的输入
除了输入特性之外,KT中的另一个关键问题是模型框架。深度学习的最新进展模拟了卓有成效的深度KT工作,利用深度神经网络顺序捕获学生知识状态的变化。两个具有代表性的深度KT模型是深度知识追踪(DKT)[21]和动态键值记忆网络(DKVMN)[35],它们分别利用递归神经网络(RNN)[31]和记忆增强神经网络(MANN)求解KT。然而,众所周知,它们无法捕获问题序列[1]中的长期依赖关系。为了解决这一问题,序列键值记忆网络(SKVMN)[1]提出了一种hop-LSTM架构,该架构将类似练习的隐藏状态聚合成一个新的状态,而带有注意机制的练习增强递归神经网络(EERNNA)[25]利用注意机制对所有历史状态进行加权求和聚合。
我们没有将相关的历史信息聚合到一个新的状态中直接进行预测,而是进一步改进了长期依赖捕获和更好地建模学生的掌握程度。受到SKVMN和EERNNA的启发,我们引入了一个recap模块,根据注意权重选择几个相关度最高的隐藏练习,以达到降噪的目的。考虑到新问题及其相关技能的掌握情况,我们归纳了交互模块,将相关练习和当前隐藏状态与聚合的问题嵌入和技能嵌入进行交互。广义交互模块能更好地模拟学生对问题和技能的掌握程度。此外,对每个交互作用采用注意机制进行最终预测,自动对所有交互作用的预测效用进行加权。

综上所述,本文提出了一种端到端知识跟踪的深度框架,即基于图的知识跟踪交互(GIKT)。我们的主要贡献如下:

  • 1)通过利用图卷积网络聚合问题嵌入和技能嵌入,GIKT能够利用高阶问题-技能关系,缓解数据稀疏问题和多技能问题。
  • 2)通过引入概述模块和交互模块,我们的模型可以更好地以一致的方式模拟学生对新问题的掌握程度和相关技能。
  • 3)我们在三个基准数据集上进行了大量的实证实验,结果表明我们的GIKT在本质上优于最先进的基线。

2 相关工作

2.1 知识追踪

现有的知识跟踪方法大致可以分为两类:传统的机器学习方法和深度学习方法。本文主要研究了深部KT方法。

传统的机器学习KT方法主要涉及两种类型:贝叶斯知识追踪(Bayesian Knowledge Tracing, BKT)[6]和因子分析模型。BKT是一种隐马尔可夫模型,它将每项技能视为二进制变量,使用贝叶斯规则更新状态。一些研究对传统的BKT模型进行了扩展,将更多信息纳入其中,如滑动和猜测概率[2]、技能难度[19]和学生个性化[18,34]。另一方面,因子分析模型注重从历史数据中学习一般参数进行预测。在因素分析模型中,项目反应理论(IRT)[8]模型参数为学生能力和问题难度,绩效因素分析(PFA)[20]考虑技能和知识追踪机的积极和消极反应的数量[27]利用因子分解机[24]将问题和用户的侧信息编码到参数模型中。
最近,由于深度神经网络具有强大的能力和有效的表征学习,在KT文献中得到了利用。深度知识跟踪(Deep Knowledge Tracing, DKT)[21]是第一种深度知识跟踪方法,它使用递归神经网络(RNN)来跟踪学生的知识状态。动态密钥值记忆网络(DKVMN)[35]可以发现每个技能的底层概念,并跟踪每个概念的状态。在这两个模型的基础上,提出了考虑更多信息的方法,如学生的遗忘行为[16]、多技能信息和专家标注的先决技能关系图[4]或学生个性化[15]。GKT[17]构建了一个技能关系图,并明确地学习它们之间的关系。但这些方法只使用技能作为输入,导致信息丢失。

一些深层KT方法在预测时考虑了问题特征。动态学生记忆网络分类(Dynamic Student Classification on Memory Networks, DSCMN)[14]利用问题难度来帮助区分与相同技能相关的问题。[25]利用问题内容对问题嵌入进行编码,使问题嵌入能够包含问题的特征信息,但现实中问题内容的收集较为困难。由于数据稀疏性问题,DHKT[29]通过使用问题与技能之间的关系来扩充DKT来获得问题表示,但并没有捕获问题间和技能间的关系。在本文中,我们使用GCN提取问题技能图中包含的高阶信息。为了处理长期依赖问题,Sequential Key-Value Memory Networks (SKVMN)[1]使用了一个带有跳的修改LSTM,以增强在练习序列中捕获长期依赖的能力。EERNNA[25]假设当前学生的知识状态是所有历史学生状态的加权总和,基于当前问题和历史问题之间的相关性。我们的方法与这两种方法的不同之处在于,它们将相关的隐藏状态聚合成一个新的状态进行预测,而我们首先选择最有用的历史练习来减少当前状态中噪声的影响,然后我们执行成对交互进行预测。

2.2 图神经网络

近年来,图数据被广泛应用于深度学习模型中。然而,传统的神经网络存在复杂的非欧几里德图结构问题。受cnn的启发,一些著作将卷积方法用于图结构数据[13,7]。提出了图卷积网络[13]用于半监督图分类,它基于自身及其邻居更新节点表示。这样,如果使用多个图卷积层,更新后的节点表示包含了邻居节点的属性和高阶邻居的信息。由于GCNs的巨大成功,进一步提出了图形数据的一些变体。
随着图神经网络(GNNs)的发展,许多基于GNNs的应用出现在各个领域,如自然语言处理(NLP)[3,33]、计算机视觉(CV)[22,9]和推荐系统[30,23]。由于gnn有助于捕获高阶信息,我们在GIKT模型中使用GCN来提取技能和问题之间的关系到它们的表示中。据我们所知,我们的GIKT方法是第一个通过图神经网络建模问题-技能关系的工作。

3 相关定义

知识追踪

问题-技能关系图

4 模型GIKT

在本节中,我们将详细介绍我们的方法,整体框架如图2所示。我们首先利用GCN学习聚集在问题-技能关系图上的问题和技能表示,并使用循环层对知识状态的顺序变化进行建模。为了获取长期依赖关系并全面利用有用信息,我们随后设计了一个概述模块,然后是一个用于最终预测的交互模块。
在这里插入图片描述

4.1 嵌入层

我们的GIKT方法使用嵌入来表示问题、技能和答案。

表示三个嵌入矩阵Es∈R|S|×d, Eq∈R|Q|×d, Ea∈R2×d进行查找操作,其中d为嵌入大小。Es或Eq中的每一行都对应一个技能或一个问题。Ea中的两行分别表示错误答案和正确答案。对于矩阵中的第i行向量,分别用si、qi和ai表示。

在我们的框架中,我们不预先训练这些嵌入,而是通过端到端优化最终目标来训练它们。

4.2

从训练的角度来看,问题数据的稀疏性对学习有信息的问题表示提出了很大的挑战,特别是对于那些训练示例非常有限的问题表示。从推理的角度看,学生能否正确回答一个新问题,取决于其相关技能的掌握程度和问题的特点。当他/她以前解决过类似的问题时,他/她更有可能正确回答新问题。在该模型中,我们结合问题-技能关系图G来解决稀疏性问题,并利用先验相关性来获得更好的问题表示。

6 结论

在本文中,我们提出了一个框架,将高阶问题-技能关系图应用到问题和技能表示中,用于知识追踪。此外,为了模拟学生对问题和相关技能的掌握情况,我们设计了一个概述模块,选择相关的历史状态来代表学生的能力。然后我们扩展了一个广义交互模块,以一致的方式表示学生对新问题和相关技能的掌握程度。为了区分相关的交互作用,我们使用了一个预测的注意机制。实验结果表明,该模型具有较好的性能。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值