【论文解读|AAAI2021】HGSL - Heterogeneous Graph Structure Learning for Graph Neural Networks 图神经网络的异构图结构学习


论文链接: http://shichuan.org/doc/100.pdf
代码链接: https://github.com/Andy-Border/HGSL
作者:北京邮电大学赵建安等人
参考阅读: https://mp.weixin.qq.com/s/hAmJdKItK8BljVGEtnU7AA
作者另一篇: NSHE
另一篇图结构学习方法 HGNN-AC

1 摘要

异构图神经网络(HGNNs)近年来受到越来越多的关注,并在许多任务中取得了优异的性能。现有人类神经网络的成功依赖于一个基本假设,即原始的异构图结构是可靠的。然而,这种假设通常是不现实的,因为现实中的异构图不可避免地会有噪声或缺失的问题。因此,如何为异质图神经网络学习一个合适的图结构而不是依赖于原始图结构是一个关键问题。为解决这一问题,本文首次研究了异质图结构学习(Heterogeneous Graph Structure Learning)问题,并提出了HGSL框架来联合学习适合分类的异质图结构和图神经网络参数。HGSL 通过挖掘特征相似性、特征与结构之间的交互以及异质图中的高阶语义结构来生成适合下游任务的异质图结构并联合学习 GNN参数。三个数据集上的实验结果表明,HGSL 的性能优于基线模型。

2 引言

许多真实世界的数据具有图结构,例如社交媒体图、文献引用图。图神经网络(GNN)作为一种处理图数据的强大深度表示学习工具被广泛地应用于节点分类、图分类以及推荐等下游任务中。最近,随着真实世界中异质图应用的激增,学者们提出了异质图神经网络(HGNN),并在一系列应用上取得了优越的效果。
大多数HGNN遵循一种消息传递(message passing)机制,其中节点的表示通过聚合和转换其原始邻居或基于元路径邻居的信息来学习。然而,这些方法依赖于一个基本假设,即原始异质图结构良好且适合下游任务。然而,这种假设因为以下原因经常不成立。首先,由于异质图通常是根据一些预先定义的规则从复杂的交互系统中提取得出,这些交互系统本身不可避免地包含了一些不确定的信息或错误。以推荐中的用户-物品图为例,用户可能会误点一些不需要的物品,给图带来噪声信息。其次,异质图的提取通常要经过数据清洗、特征提取和特征转换等过程,这些过程通常与下游任务无关,导致提取的图结构与下游任务之间存在差距。因此,为GNN学习适合下游任务的异质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值