【论文翻译|AAAI2019】Cash-Out User Detection Based on AHIN with a Hierarchical Attention Mechanism

基于属性异构信息网络的分层注意机制的提现用户检测

摘要

套现欺诈是金融服务中主要的欺诈行为之一,是指用户通过非法或不诚实的手段来追求现金收益。现金用户检测的传统解决方案是对每个用户进行微妙的特征工程,然后应用分类器,如GDBT和神经网络。然而,金融服务中的用户具有丰富的交互关系,传统的解决方案很少能充分利用这种交互关系。本文以蚂蚁金服集团蚂蚁信用支付的真实数据集为研究对象,首先研究了套现用户的检测问题,提出了一种基于分层注意机制的套现用户检测模型HACUD。具体地说,我们利用属性异构信息网络(AHIN)对信用支付服务场景中不同类型的对象及其丰富的属性和交互关系进行建模。HACUD模型利用AHIN中结构信息的不同方面,通过基于元路径的邻居增强了对象的特征表示。此外,还精心设计了分层注意机制来模拟用户对属性和元路径的偏好。在两个真实数据集上的实验结果表明,HACUD算法的性能优于现有的算法。

1 引言

信用支付服务,如商业银行的线下信用卡服务和互联网金融机构的在线信用支付,被广泛应用于日常生活的许多方面,给用户和商家都带来了方便。然而,日益增多的欺诈行为严重影响了信用支付服务的安全性。套现诈骗是指通过非法或虚假手段获取现金收益,例如购买预付卡或其他商品,然后转售。随着电子商务的迅速发展,信用支付已成为各种信用支付服务的主要诈骗手段之一。套现欺诈行为是违法的,可能导致金融风险,因为在大多数情况下,套现用户的贷款违约概率要高得多。因此,现金提取用户检测成为金融机构诈骗检测系统中最重要的组成部分之一。
现金提取用户检测的目标是预测用户将来是否会进行现金提取交易。因此,这个问题可以表述为一个分类问题。传统的解决方案首先对每个用户执行微妙的特征工程,然后基于这些特征训练分类器,如基于树的模型或神经网络。这些方法的关键在于从不同的方面提取用户的统计特征,如用户资料、信用记录、交易汇总以及其他相关业务的近期行为。传统的预测方法主要是基于某一用户的统计特征进行预测,但很少充分利用用户之间的交互关系,这可能有利于现金提取用户的检测问题。
事实上,信用卡支付服务场景中存在着丰富的交互关系,这对现金提现用户的检测问题非常重要。图1a展示了一个信用支付服务的一般场景,其中有三种对象:用户、商家和设备(访问服务的方式,如网站、桌面、移动应用程序、wifi设备等)。这些对象除了具有属性信息外,还具有丰富的交互信息,如用户之间的资金转账关系、用户与设备之间的登录关系、用户与商家之间的交易关系。现金提取用户不仅具有异常特征,而且在交互关系中行为异常。例如,提现用户可能同时与特定商家有很多交易和资金转账交互,这是传统特征提取难以挖掘的。
为了挖掘信用支付服务的交互关系和特征信息,我们提出了一种基于属性异构信息网络(AHIN)的信用支付服务场景模型。最近出现的异构信息网络(HIN) (Shi et al. 2017),由多种类型的节点和链接组成,被提出作为一种强大的信息建模方法来表征数据异构性(Sun et al. 2011;赵等,2017)。此外,为了整合对象的属性信息,我们将传统HIN扩展到AHIN,其中HIN中的对象可以包含属性(或称为特征)。图1b为信用支付服务场景中AHIN的网络架构,清晰地说明了对象及其交互。在开采HIN方面已经做出了一些努力,并在各种应用中显示出了有前景的性能(Dong, Chawla,和Swami 2017;孙汉2012;Shi et al. 2018)。但是,它们通常是针对特定的任务而设计的,仅利用结构信息,不能直接应用于AHIN和cash-out用户检测问题。


本文首先研究了AHIN框架下的现金提取检测问题,提出了一种基于层次注意机制的现金提取用户检测模型,称为HACUD。HACUD的基本思想是通过充分利用交互关系显著增强对象的特征表示,即在AHIN中借助基于元路径的邻居。灵感来自(Kipf and Welling 2017;Zhang et al. 2018)和我们对真实数据的观察,我们假设物体的特征表征,除了内在特征外,还由其邻居的特征构成。我们提出了基于元路径的邻居概念,以利用AHIN中丰富的结构信息。也就是说,我们可以通过指定的元路径(连接两个节点的关系序列)找到节点的邻居。它有几个优点:(1)它可以通过不同的元路径捕获结构信息的不同方面(Han et al. 2018);(2)与传统的网络表示学习方法相比,极大地降低了表示空间的维数;(3)具有动态预测新节点的潜力。此外,我们假设对象属性和元路径具有不同的重要性,并精心设计了一个分层注意机制来学习用户对属性和元路径的偏好。具体来说,我们的注意机制的第一层在特征空间(即属性)中建模用户的注意,而第二层捕获预测任务的不同元路径的不同贡献。最后,利用多层感知器进行基于聚合特征表示的套现概率预测。

总之,我们的工作有以下贡献。

  • 我们首先研究了现金提取用户的检测问题,这是金融欺诈领域中一个非常重要且广泛存在的问题。
  • 我们提出将提现用户检测问题建模为AHIN中的一个分类问题,该问题由不同类型的对象及其在信用支付服务场景中的丰富交互构成。
  • 我们提出了一种新的模型HACUD来解决这个问题,它采用基于元路径的邻居来充分利用结构信息,并采用分层注意机制来自动学习属性和元路径的重要性。
  • 在两个真实数据集上的大量实验表明,与目前的技术水平相比,所提出的HACUD的性能最好,以及分层注意机制的好处。

3

5 相关工作

异构信息网络(Shi et al. 2017)是一个新兴的方向,可以对真实场景中复杂的对象及其丰富的关系进行建模。由于HIN在建模各种异构数据方面的灵活性,许多基于元路径的搜索和挖掘任务在过去几年中得到了探索,包括聚类(Sun et al. 2012)、分类(Ji, Han, and Danilevsky 2011)和推荐(Hu et al. 2018)。考虑到节点具有丰富的属性,(Li et al. 2017)进一步提出了属性异构信息网络,以丰富对象的信息内容,并研究了AHIN中对象的聚类问题。传统的网络挖掘方法并不重视节点属性信息,而节点属性信息在实际应用中可能发挥重要作用。因此,我们首先提出将现金提现用户检测问题建模为AHIN中的分类问题。
另一方面,网络嵌入在结构特征提取方面显示出了巨大的潜力,并成功地应用于许多数据挖掘任务中。早期的网络嵌入方法侧重于同构网络,通常利用网络上下文信息来表示节点,如基于上下文的随机游走(Perozzi, alrou, and Skiena 2014;Grover and Leskovec 2016),网络邻域(Wang, Cui, and Zhu 2016;Tang et al. 2015),高阶网络邻近性(Cao, Lu, and Xu 2015)。近年来,人们越来越关注异构网络。(Dong, Chawla, and Swami 2017)利用基于元路径的随机行走获取节点的上下文,并通过异构的skip-gram模型学习HIN嵌入,而(Fu, Lee, and Lei 2017)通过神经网络捕获丰富的关系语义。此外,也有一些作品试图通过嵌入特征和标记数据的方法来全面分析网络,包括GCN (Kipf and Welling 2017)、Structure2vec (Dai, Dai, and Song 2016)等。遗憾的是,这些方法通常是针对特定的任务而设计的,只能利用网络中的部分信息,因此不能直接应用于AHIN和cash-out用户检测问题,具有良好的性能。

结论

本文首先研究了信用支付服务场景下由对象及其关系构成的异构信息网络框架下的提现用户检测问题,并提出了一种新的HACUD模型。在基于元路径的邻居的帮助下,我们从节点属性中聚合对象的特征,以及由元路径生成的结构特征。此外,我们设计了一个分层的注意机制来模拟用户对属性和元路径的偏好。以蚂蚁金服集团蚂蚁信用支付的真实数据集为例,对现金用户检测任务进行了大量实验,验证了该模型的有效性。作为未来的工作,我们将研究如何集成更多的异构信息(例如,交互关系),并将我们的模型扩展到半监督场景。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值